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EDITORS' PREFACE 

The Conference on Mathematical Methods and Applications of Scattering Theory took place at Catholic 
University, Washington, D.C., from 21 May through 25 May 1979. The general area of the conference was 
mathematical methods used in scattering theory. The main motivation for holding it was to bring together 
mathematicians and physicists working in this area, and to give them an opportunity to interact in a wide variety 
of aspects of scattering theory and related fields. 

The proceedings of the conference presented in this volume are dedicated in memoriam to our friend and 
colleague W. S. Ament of the Naval Research Laboratory, in recognition of his distinguished contributions to 
classical scattering theory. 

The thirteen sessions of this five-day conference were mainly devoted to acoustic, electromagnetic, and 
quantum-mechanical scattering, and to inverse methods in scattering theory. Both mathematical foundations of 
the theory as well as physical applications were considered, with about equal time given to each. 

There were fifty speakers at the conference, and they included some of the most distinguished names in 
foundational and applied scattering theory. The wide range of subjects discussed by these speakers, most of 
whom gave invited talks, can be appreciated by glancing at the table of contents of these proceedings. They 
ranged from inverse problems in speech and hearing to scattering by surface waves in acoustics and nuclear 
physics, and from multichannel quantum-mechanical scattering theory to nonlinear evolution equations. 

We wish to thank Professor C. J. Nuesse, Executive Vice President and Provost of Catholic University, 
and Dr. A. Berman, Director of Research of the Naval Research Laboratory, for having given the Welcoming 
Address and the Opening Remarks at the conference, resp.ectively. We are grateful to Professors J. D. Dollard, 
J. B. Keller, H. Moses, R. G. Newton, V...Twersky, H. Uberall, and V. Weston for their willingness to chair 
conference sessions. We thank Professor Uberall for his extensive organizational efforts and arrangements at 
Catholic University. 

The financial support of the conference was provided by the Army Research Office, the Air Force Office 
of Scientific Research, the National Science Foundation, and the Office of Naval Research, and we acknowledge 
it gratefully. We are thankful to Dr. Berman for financially supporting the publication of these proceedings. 
The generosity of Catholic University in making available at no cost the Nursing Auditorium for the conference 
sessions is gratefully acknowledged. 

We would like to thank Ms. R, Tosta, the Conference Secretary, for her untiring efforts, and Mr. J. Ertel, 
Ms. P. Burt, and Mr. M. McCord for their efficient handling of the audiovisual equipment and other contribu- 
tions that assured the smooth functioning of the conference. It is also a pleasant duty to thank Ms. D. B. Wil- 
banks and her colleagues of the Computerized Technical Composition Section of NRL for their expert care in 

"preparing a camera-ready copy of these proceedings, and Springer-Verlag for their efficient publication efforts. 

J. A. DeSanto A.W. Sfienz W.W. Zachary 
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OPENING OF THE CONFERENCE ON MATHEMATICAL 
METHODS AND APPLICATIONS OF SCATTERING THEORY, 

CATHOLIC UNIVERSITY, 
21-25 MAY 1979 

A. Berman 

Director of Research 
Naval Research Laboratory 

Washington, D.C. 20375 

On behalf of the Naval Research Laboratory, I wish to welcome you to the Conference on Mathematical 
Methods and Applications of Scattering Theory. 

We at NRL feel that scattering theory is an important aspect of our research program. As you can see 
from the representative NRL speakers at this conference, we are actively working in acoustic, electromagnetic, 
and quantum scattering theory, as well as on inverse scattering and remote sensing. For example, in the acous- 
tic and electromagnetic areas, we are involved in problems of scattering from rough surfaces as models of  the 
ocean surface, scattering from obstacles, and in inversion and remote sensing problems to identify oceano- 
graphic variability. 

One of the main reasons for our co-sponsoring this conference was to bring together academic, govern- 
ment ,  and private, industry scientists of different disciplines having strong research interests in some aspect of 
scattering theory. 

Scientists who concentrate on developments in the foundations of their disciplines rarely see applied prob- 
lems being discussed, and most  often do not apply their work to practical problems. On the other hand, 
research scientists who are oriented toward applications do not usually inquire into the foundations of their sub- 
ject. This conference will give these groups an opportunity to interact in many different facets of scattering 
theory. This has three obvious advantages. First, it is well known that heuristic insights gained by working on 
concrete practical problems may furnish very valuable clues for the development of complete mathematical 
theories of the physical phenomena involved. Second, it will enable foundational research scientists to see how 
some of their work is used in practice, to suggest additional uses, and to furnish constructive criticism of appli- 
cations from a rigorous viewpoint. Third, it will enable research workers in applied scattering theory to see the 
progress in rigorous methods. These methods are important in isolating the essential elements of scattering 
phenomena,  and in arriving at a qualitative understanding of the phenomena in question. This in turn fur- 
nishes a valuable guide for detailed analytical or numerical calculations, which are frequently necessary in 
applied scattering problems. 

Because of the above reasons, we feel that the interactions between the conference participants will sub- 
stantiaUy benefit all disciplines of research concerned by demonstrating the formalism and progress in other 
areas, and will broaden the base of knowledge of both applied and basic researchers. Although it is well known 
that not enough  interaction among scientists of different types takes place, very few conferences stress this 
interdisciplinarity. This is particularly true of conferences on scattering. We believe that this conference will 
make a significant contribution to interdisciplinary understanding and appreciation of the latter subject. Finally, 
we feel that it is timely because it will be an important contribution to knowledge in scattering theory and the 
related ~ubjects covered by the conference. 

I would like to thank the organizers of the conference, Drs. DeSanto, S~ienz, and Zachary from NRL, and 
Professor Uberall from Catholic University, for doing a great deal of work and assembling an outstanding group 
of experts in scattering theory. This conference would not have been possible without the generous support of 
the Army Research Office, the Air Force Office of Scientific Research, the National Science Foundation, and 
the Office of Naval Research. Catholic University deserves our thanks for generously providing this Audito- 
r ium at no cost for the conference sessions and for their valuable contributions in effectively handling housing 
and other problems vital to the success of the conference. 

Finally, we hope that you enjoy and benefit from the conference as much  as we have enjoyed the oppor- 
, tunity to sponsor it. 
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MULTIPLE SCATTERING OF WAVES BY 
CORRELATED DISTRIBUTIONS 

Victor Twersky* 

Mathematics Department, 
UniversiO~ of  Illinois 

Chicago, Illinois 60680 

INTRODUCTION 

We sketch several recent developments for scattering of waves by pair-correlated distributions of discrete 
obstacles, and indicate corresponding applications. 

In order to introduce the representation theorems required by the dispersion equation for the coherent 
propagation coefficient (the bulk value), we start with key forms for the scattering of scalar waves by one obsta- 
cle, by a configuration of N obstacles [1] and by a statistical ensemble of configurations [2,3]. For simplicity, 
the scalar Helmholtz equation is considered explicity; analogous results are available for the vector and dyadic 
analogs [1]. We cite results or procedures of Foldy, Keller, Lax, Rayleigh, and Reiche in the course of the 
presentation, and compare wth several earlier explicit approximations [4-10]. See [3] and [10, (1962)] for 
detailed introductions, additional citations, and for related material on the incoherent scattering. We treat 
three, two, and one-dimensional scalar problems in parallel, but use three-dimensional terminology; the field 
corresponds to, e.g., the excess pressure in small amplitude acoustics. Applications to optics as well as acoustics 
are mentioned. 

The basic equations are (6) and (8): the first specifies the field for a given configuration in terms of the 
multiple scattered amplitudes G of the obstacles, and the second relates G to the single scattered amplitudes g. 
Equation (8), essentially a reciprocity relation between the sets G and g, is regarded as a functional equation for 
G in terms of known g (the direct problem), but one could just as well regard G as known and seek g (the 
inverse problem). (See [1] for full discussion of (8) and of vector and tensor analogs, Special cases of (8) 
have been applied in detail to two obstacles [1], to gratings of parallel cylinders [11], and to singly and doubly 
periodic arrays of bounded obstacles [12].) Equations (9) and (10), the ensemble averages of (6) and (8), are 
the first two hierarchy integral relations for the statistical problem; we use a truncation procedure [7] discussed 
elsewhere in detail [3] and work with a simplified form of (8). The ensemble is specified by the average 
number p of scatterers in unit volume, and by p f ( R )  with f ( R )  as the distribution function for the separation 
R of pairs. For radially symmetric scatterers '(or for more general shapes, aligned or averaged over alignment, 
and regarded as if inclosed within transparent spheres) f ( R )  is taken as the liquid-state radial distribution func- 
tion for impenetrable particles. More generally, we regard f ( R )  as determined by the shape of the exclusion 
surface specified by the minimum separation of scattering centers. The general case we consider corresponds to 
differently aligned nonsimilar scatterer and exclusion surfaces. 

1. REPRESENTATIONS 

We consider a plane wave (ae -i~t = e ik'r-~'~t incident on an obstacle with center at r = 0, the center of its 
smallest circumscribing sphere (of  radius a). In the external region (outside the scatterer's volume Vbounded 
by S), the field ff = 4, + u satisfies (V 2 + k2)¢ = 0 with u as a radiative function: 

u ( r )  = Co f [ho(klr - r'l)0mU(r') -- UOmho]dS(r') =- {ho, u}; 

k 1 1 (1) 
ho(x) = h(l)(x),H(1)(x),eiJxl; Co 4"tri' 4i" 2ik" 

where ~,  is the outward normal derivative. The three forms of ho and c o correspond to three, two, and one- 
dimensional problems, i.e., to bounded obstacles, and to normal incidence on cylinders and slabs respectively. 
(For slabs, the brace operation represents the sum of the values at the entrance and exit faces.) For r ~ ~ we 
have 



u ho(kr )g ( [ ,~ ) ,  g ( [ , ~ )  , - i k - r '  = /e • ,uJ ~ g{kr, k}, k r = k~', k = k~:, (2) 

with h as the asymptotic form of ho, and g ( [ , k )  as the scattering amplitude. Using the complex spectral 
representation for ho in (1), we obtain (at least for r greater than the scatterer's projection on [),  

P i k  . r  ^ ^ 
u ( r )  = j c e  c g(rc, k),  kc = k~c. " (3) 

In three dimensions, rc = ~(Oc,$c) and 1" = (1/2~r)fdl~ (0.6c) with contours as for ho~1); in two, rc = ~(0c) 

and f ,  = (1/~)fdo~ with contour as fo"~ Ho 0)' in one, kc = -¢-kl and f ,  selects the sign corresponding to 
c A ' c . . 

z = _+ Izl. The associated integral operator for Jo = Reh, o represents the mean (M) over real dlrecUons of 
observation, i.e., M3 = (1/4rr).J d l l  (0 ,$) ,  M2 = (1 /21r)JdO,  and Ml is one-half the forward and back scat- 
tered values. In terms of M, the energy theorem reads 

4zr 4 
-croRe g (f~, ~:) = era + o's; ~rs = o-oMIg (r, fOI2; ~ro = - -  -~, 2, (4) 

k 2 '  

where ~rA and O's are the absorption and scattering cross-sections. 

For scatterers specified by (V 2 + K'2)0 ' = 0 in V, and t k = 0 '  and OnO = B'OnO' on S, 

g (~, It) = - c o l  [(C' - 1)k2e-ikr'r'o'(r') - (B' - 1) '~e -/k' '¢ - Vtk']dV(r') 

tt -ikr'r' = It e , t~' ]] =-- g [[ kr, k ~ ;C' = B'~'2 = B' (K'2/k2).  (5) 

If we identify ~ as the excess pressure, then for the simplest cases C'  is the obstacle's relative compressibility 
and 1/B'  its relative mass density. More generally the relative parameters are complex with Im C'  > 0 and 
Im B'  < 0 to account for energy losses. The relative index of refraction equals ~ ' =  (C'/B')U2; the relative 
acoustic impedance is given by ~ ' =  (C~B') -a/2. 

Indicating the solutions corresponding to arbitrary directions of incidence ra, rb by ~a,~b (each subject to 
the same conditions on S and in V as t~ = ~ + u) ,  the subsequent development applies for general obstacles 
satisfying {~b,,0b} = 0. This condition gives {~ba,u b} = {6b,Ua}, i.e., the usual reciprocity relation 

g ( - L ,  ~b) = g (--~b, L ) .  

For a fixed configuration of N obstacles (with surfaces Ss, volumes Vs, centers rs, etc.) we write the exter- 
nal solution as 

N 

= ~ + ~"~ U~ (r - r~;rl, • . .  , rN), Us = .)~feikC(~-~)Gs (re,) G~(1)= ter -ikr'r',usjs,.~, (6) 
S f f i l  

where the multiple scattering amplitude Gs is the form (2) over S~(r'), and r '  is the local vector from rs. 

With reference to scatterer t, 

~ = ~ , = d P t + U t ,  dpt=~b+Z'sUs, E's= ~",, (7) 
S # t  

such that ~t,aPt,Ut satisfy the samerela t ions  at St and in Vt as ~,~b,u for the corresponding scatterer in isola- 
tion. Thus {~,~'t}t = 0 gives G t ( - ~ )  = {&a, Ut}t = {~,u~}t; consequently, from the forms for g,G,U as in 
(2) and (6), we obtain a corresponding reciprocity relation 

"^ ~ ik'rt Z y gt(r, rc)Gs(rc)e , kc = kf:c, Rts = r t - r s  ~ R'tsItts, (8) Gt(~) : gttr, K)e  + . . . .  iki'Rts 

which holds at least if the scatterer's projections on Rts do not overlap. For a given configuration, th is  system 
of equations determines G in terms of g (the direct problem), or g in terms of G (the inverse). 

From (6) and (7), the average of • over a statistically homogeneous ensemble of configurations of N 
identical and aligned obstacles whose centers are uniformly distributed in V is 

< , I , >  = ,  + of v< Us(r - rs)>~drs ,  p = N / V ,  < Us>s = < W s > s  - < O s > , ,  (9) 

where < ' " > s  indicates the average over all variables but rs. If r is within Vs=V,  we use 
< W s ( K ' ) > s - < d p s ( k ) > s ,  and if not, the radiative form < U ~ ( k ) > s .  We have < U s ( k ) >  s = 

, i ( k  c • ( r - - r  s ) 
{ h o ( k l r -  r, - r I), < Us>,} over S~ = S, as well as < U, (k )>~  = f < G~(ic)>,e  . From (8), we 

. . . . . .  c 
express < Gs>.s in terms of the pair dmtrlbutmn function 0 f ( R ) ,  such that f ( R )  ~ 1 for R ~oo ,  and f ( R )  = 
0 for R < b(R).  Here, b(P,) is the min imum separation of centers, i.e., Rts = b(R) specifies the exclusion 
surface S inclosing volume v containing only one center. Thus,  



~^ ^ "  ik 'r t  +pyv_vdrsf(Rts)ycgt(LFc)<crstrck>s,e , (10) < Gt(D>t = gttr, k)e  . . . .  ikc'Rts 

where < Gs>~z is the average over all variables but rs and r t. 

If the scatterer centers are distributed in the slab region 0 ~< z ~< d, then within the distribution exclusive 
of boundary transition layers (with thickness of order a), the internal field has the form 

<kit> = Ale iKl'r + A2 eiK2"r = ZiWi(r); Ki = KiKi = krliKi; Im "0i > 0, (11) 

such that K~ " t = k • { with t • i = 0 (Snell's law); for the simpler cases, K1 and K2 are images in z = 0. The 
corresponding terms of <Ws(rs + r ' ) > s ,  < ~ > s , < U s > s  have the translational property indicated by 
qji(r')Wi(r~), 6 ~ i ,  u ~ i  where the fields $~,$i,u~ are related on S and in V as for a single obstacle. We write 
u j ~  h (kr)g(k~lK) ~ hg j, with gi in the form (2) or (5) in terms of u j or qd. The average transmitted and 
reflected fields have the forms T$ = Te ~k'r and R 6 '  = Re/k'r , with k' as the image o f k  in z = 0. 

From (9), we obtain transmission (T) and reflection (R) coefficients and extinction (of ~b) and cancella- 
tion (of $ ')  relations [2] which reduce to earlier forms [4] in terms of the present gi if boundary transition 
layers are negligible). We also obtain the boundary independent relation 

fr - i K i ' r '  i = k 2 - k 2 = -(p/Co)g IIKIKll= - ipko 'og IIK]K~, g IIK~IKtll --= ue ,$ II, (12) 

a form obtained originally by REICHE [5] for spherical dipoles and by FOLDY [6] for monopoles. The inclo- 
sure of the argument of g [K[K ] indicates explicit restriction to the volume integral form (5). The analog for 
B' = 1 with K '2 - k 2 as the scattering potential was derived originally by LAX [7], who interpreted g ~K[K ]1 as 
proportional to the result for one scatterer in K-space. See [2] for alternative representations, and for 
corresponding forms for the bulk parameters. 

From (10) with <Gs>st ~ <Gs>s, analogous to <dPs>st ~ < ~ s > ~  as introduced by LAX [7], in 
terms of the radiative function 

i k e 'R  i kc .R  
U = f g(L~c)g(kclK)e -- f F ( L ,  kclK)e , (13) 

we obtained [2] the dispersion equation 

= - -  g _  {e -iK'R U}s + pyv_v[f(R) - 1]e-il~'RUdR. g(krlK) (14) 
co(K-  k 2) ' 

Here S = S(b) is the exclusion surface, and V - v(b) now represents the corresponding depleted volume of all 
space (as appropriate for f - 1 ~ 0 for even moderate values of R). More complete results may be based on 
KELLER's procedure [8], or on alternative approximation [3] of < Gs>st or <~s>st.  See [3] for limitations 
on forms such as (14) obtained by truncating the hierarchy integrals. 

In terms of 

F{k~, KIK} = {e -ik'R, U}s, M ( k .  K) = pfv_v[f(R) - 1]ei(k'-K)'RdR, (15) 

we rewrite (14) as 

g (kr IK) pF{L, KIK}co (K 2 - k 2) + Y c F ( k ' k c [ K ) M ( k c ' K ) "  (16) 

2. APPLICATIONS 

We incl~ude key elementary approximations for slight ( B ' ~  1 , C ' ~  1) scatterers small compared to 
wavelength (ka ~ 0) for comparison with more general results. For sparse uncorrelated distributions, we use 
F{} ~- g(L l~)g(klK) in (16) for ~ = f~ to obtain 

K 2 -  k 2 ~ -ipko'og(f( , f t)  ~ 2k(KR - k), Re (KR/k) = 1 + (p~o/2k)Im g(k ,k ) ,  

and 

2Im KR = -- pooRe g (k , k )  = p(o- A + o-s), (17) 

where KR is essentially Rayleigh's result [9] generalized to arbitrary scatterers. 

To modify Im KR and include correlations, we approximate the complex Hankel-type integral y c F M  of 
(16) by the real Bessel-type, and replace g (kr ]K) by g (~, ~z). For Im g > > Re g, we obtain 



2Ira K ~- pO'A + p ~ o M [ l g ( L f O l 2 W ( L k ) ] ,  W(Lk)  = 1 + o f  If(R) - l]#k(i'-~)'RdR, (18) 

where if f ( R ) =  f ( R )  is the radial distribution function, then W(L k) is a standard form in x-ray diffraction by 
liquids. For small-spaced scatterers (spacing between closest centers small compared to k), to lowest order in 
k = 27r/k, 

a(o-A + o-sW), w = 1 + o f  If(R) - 1]dR. (19) 21m K 

Alternatively, if in (16) for ~ = I~ we introduce F{k,, K [K} ~- g (i, I()g (kK [K), then 

K 2 -  k 2 ~  --P--g(K,K)[lco - g(k_l IK) f ~ g ( K ' r ~ ) g ( k ~ [ K ) M ( k ~ ' K ) ] - l '  kK = kK .  (20) 

Essentially this form in terms of one g-function with kK replaced by K is given by LAX [7]. The leading terms 

K 2 - k 2 ~- --P---[g(K,K) + f c g ( K , ~ c ) g ( r c K ) M ( k c , K ) ] ,  i21) 
Co 

reproduce (18) under the same restrictions. 

We may obtain closed-form approximations for W without considering f explicitly, by applying statistical- 
mechanics theorems that relate W (proportional to the fluctuations in the number of particles) to a derivative 
of the equation of state (E) for the corresponding statistical mechanical fluid. Thus, if we use the scaled- 
particle approximations [13] for impenetrable particles that occupy the fraction w (volume fraction) of space, 
then from (OE/Op) -1 = IV, we obtain [14,15] simple rational functions of w : 

( 1 -  w "+1) 
IV,= [1+  ( n - 1 ) w ]  " -1 '  n ~ 3 , 2 , 1 ;  W o =  1 - w .  (22) 

Here, w corresponds to spheres, cylinders, or slabs with diameter b for n ~ 3,2,1. The case Wo (which arose in 
an earlier development [10]) corresponds to a random lattice gas, i.e., to uncorrelated space-occupying particles. 

From (19), we write the extinction coefficient as 

2 Im K = 7 = Cw + B w W =  Cw + BS(w), (23) 

where C and B are proportional to the absorption and scattering cross sections of an isolated particle. The same 
form arises in electromagnetics and optics. We applied (23) in terms of W of (22) for lossless scatterers 
(C = 0) to account [14] for the transparency of biological structures having globular or cYlindrical inclusions in 
ranges of the parameters where uncorrelated scattering theory suggests that the distributions are opaque; the 
opacity that results with swelling could then be interpreted as arising from a decrease in local order. (See [14] 
for detailed applications to the cornea.) We also considered S ( w )  ~ w W ( w )  as a function of w for the cases in 
(22), and determined the maximum value S(wb) and the corresponding value w = w~. For nonvanishing, 
small C/B, the maximum of z is shifted to WA > W~, TO first order in C, 

T(W~) ~ Cw~ + BS(w~), wa -~ w~ + C/BIS"(wo) I, (24) 

where S" = 02S/02w. 

For 'detailed consideration, we analyzed (15) and (16) by expanding the g functions in terms of angle 
functions appropriate for the symmetry of the exclusion surface. In particular, for radially symmetric scatterers 
(intrinsically symmetric or symmetrized by averaging over orientation) and radially symmetric pair correlations 
( f  = 0 for R < b) we use the standard Legendre or Fourier expansions for g (~', k) in terms of the known iso- 
lated scattering coefficients a n . We rewrite the results [2] collectively as 

n 2 - 1:= - i r ~ , A , n  2n, A n = an[1 + ~,A~.0~+~Hn~(.0)], r = po'o/k. (25) 
n = o  1 , = o  

The A, are determined by a, and H,~ (analogs of lattice sums), and the resulting series in An %) is a functional 
equation for r/. 

For spherical symmetry  

10.01[,,.no+o- n m ] H~ = in~L"l"rnl, n" v i i ' -  .02 -- 1 + Hm.I ' F = p4"tr/k 3, 

Hm = 4rrP f o ~ [ f ( R )  - 1 ] j , (KR)h~I ) ( kR  )R2dR, (26) 



the expansion P n ( x ) P ~ ( x )  = Edm[O; Olpm(x)  for the Legendre poly- where the coefficients d m are known from ,, ~ 
nomials, and where (-0~+~ - -ore)/(-02 _ 1) = -0 m + -0m+2+... +-0~+~-2 is nonsingular. For circular symmetry, 

n-1 
2Hn~ = iF-0~-n'~ -0 2m + H~_~ + H~+~, F = 4 p / k  2, 

m ~ a  

and 

Ho =/4_.  = 2~pfo~ be(R)-  1]Jo(KR)H~)(kR)RaR. (27) 
For slabs, only n = 0 and n = 1 arise: 

Ho = 2&J'S b~(R) - 11 c o s ( K R ) e i ~ d R ,  

H 1 = - i 2 P Y o = [ f ( R )  - 1]' sin (KR)eikRdR,  F = 2p /k ;  H H =  i F + H  o. (28) 

If we retain only monopoles (ao) and dipoles (al),  then from (25), 

Ao = ao (1 + AoHo + A 1/'1"1~), A 1 = al (1 + AoH1/-0 + A IHll),  Hll  = [iF + 1to + (n - 1)/-/1]/n. (29) 

Consequently, 

ao + affl 2 -  aoal(H11 + -02Ho - 2-0H12) 
~2 = 1 - iF 1 - aoHo - a l H H  + aoa l (HoHH - H ~ )  " (30) 

An analogous result for circular cylinders was obtained by BOSE and MAI [16] by separating variables in 
circular coordinates, and applied for detailed considerations to an exponential correlation function 
f -  1 = e -n/L for R > 2a. Similarly, an analog for spheres [17] obtained by Fikioris and Waterman by 
separating variables in spherical coordinates corresponds to f -  1=0 for R > 2a. (The generalization to 
include octupoles, i.e., "0:(ao,al,a2) is given in [2, (1977)] We used the virial expansion of f for spheres, as 
well as the closed forms W of (22) to apply (30) and corresponding expressions for the bulk parameters B and 
C = B-02 to low frequency acoustics [15]. 

The same,functions H n arise for aligned nonradially symmetric scatterers, provided the exclusion surface 
is radially symmetric. For aligned elliptic cylinders and ellipsoids, instead of a single system of algebraic equa- 
tions for the coefficients An in (25), we dealt with two coupled systems involving two sets of As. For non- 
radially symmetric statistics, we expand the g's in terms of special functions of angles appropriate to the sym- 
metry of the exclusion surface, e.g., Mathieu functions for elliptic cylinders [2]. Low frequency results can be 
obtained from such series, or directly from (16). 

The low frequency limit of (30) for pure dipoles specified bY B' = 1/-0 '2 equals 

iFal  w ( B ' -  1) (31) 
-02 - I  = B -  1 1 -  i F a l / n  ~=> B -  1 =  1 +  ( B ' -  l ) ( 1 -  w ) / n  

with w as the volume fraction for dipoles. The result for B for n = 3 was obtained originally by MAXWELL 
[18] in the form 

B - 1 w B'  - 1 (32) 
B + 2  ~ + 2 '  

i.e., the form attributed to Clausius, Mossotti, Lorenz and Lorentz. Maxwell also gave the result for n = 1, 
and RAYLEIGH [19] derived the values for n = 3,2 for cubic and square lattices. 

For the analogous problem of aligned anisotropic dipoles and similarly aligned ellipsoidal exclusion regions 
specified by the elliptic integral depolarization factors Qi, for incidence along a principal axis, we obtain 

1 iFal i  
"02 I = B ~ -  1 1 - i F a u Q ~ "  E Q i =  1, i =  1,2,3. (33) 

If the dipoles are ellipsoids specified by B~ and q~, then (33) reduces to 

wSj 
At A i =  B i -  1, 8~= B ' ~ -  I, D r =  q ~ -  wQ~, (34) 

1 + 8gD~ ' 

where the compound depolarization factor D~ is always positive because of an implicit constraint that bounds w 
below the densest realizable packing of the ellipsoidal dipoles [2]. Form (34) also arises in electromagnetics for 
E parallel to an axis of dielectric particles soecified by B~ = Esi/%j = 'on, where s and o indicate values for the 



= ebi/~oi - ~ J ~ o i  with b indicating the bulk value; similarly particle and embedding medium: for this case B i _ 2 2 
for H parallel to an axis of particles specified by B'j = p,J/Xot. We write all cases collectively as 

Ai 8t et Pi 
l + QiAt W--l + qigt, A t =  ~ -  l, 8 j =  --pot - 1, (35) 

where Pt and and Pi correspond to bulk and particle parameters, respectively. 

For the more general case of noncoincident axes of the corresponding dyadics ~, ~, I), Po, we have 

~" (i'1-0 '?t) -1= WS' (~_]_~.~)-1, ~ = ~ . ~ o l _ i ,  8 = ~ . ~ o 1 _ i  (36) 

where I is the identity dyadic. This form I? = wT' generalizes Maxwell's original construction for spheres in 
that it relates the distant dyadic potentials of N ellipsoids to that of an equivalent (non-existing) ellipsoid. 
From (36), 

= w ( i + 8 " I ) )  - 1 - 8 = w 8 " ( i + 1 ) ' ~ ) - 1 ,  1 ) = ~ _ w l ) ,  (37) 

with 1) as the compound depolarization dyadic. 

Thus, there are four distinct bases of anisotropy for a general composite medium: two are intrinsic (form 
independent) and are determined by the parameters 6f the inclusions (~) and the embedding medium (Po); two 
depend on form, the form of the particle (~) and of the exclusion region (1)), The roles of ~, Po and ~ (particle 
shape) are the same as for the analogous problem of a regular lattice; the shape of the exclusion region t) 
(correlation, configurational factor) is an analog of the shape of the unit cell. See [20] for detailed applications 
to bipolarization and birefringence studies. 
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INTRODUCTION 

This paper deals with pulse mode sonar echo prediction; that is, the calculation of sonar echoes when the 
characteristics of the transmitter, scattering objects and ambient medium are known. The physical hypotheses 
are 

• The medium is a stationary homogeneous unlimited fluid. 

• Both the sonar system and the scattering objects are stationary. 

• The  scattering objects are rigid bodies. 

The analysis is based on the theory of scattering for the wave equation developed in the author 's  monograph 
[1]. The principal result of this paper is an asymptotic calculation of the echo waveform, valid when both 
transmitter and receiver are in the far-field of  the scatterers. The results show that, in this  approximation, the 
dependence of the echo waveform on the scatterers is determined by the S-matrix of  scattering theory. The 
work is a sequel to the author 's  article [2] where similar results are derived for plane-wave signals. 

1. THE BOUNDARY VALUE PROBLEM. 

In what follows, x = (X1,X2,X3) E ~ . 3  denotes the coordinates of a Cartesian system fixed in the medium 
and t E F, denotes a time coordinate. The acoustic field is characterized by a real-valued acoustic potential 
u (t,x) which is a solution of the wave equation 

02u V2u = f ( t ,x ) .  (1.1) 
0t  2 

The function f ,  which characterizes the transmitter, will be called the source function. The scattering of a sin- 
gle pulse of duration T, emitted by a transmitter localized near a point x0, will be analyzed. Hence, the space- 
time support of  f is assumed to satisfy 

s u p p f  C {(t,x)l to <. t <~ to + T and [x - x0] ~< 80}, (1.2) 

where 80 and t o are constants. The scatterers are represented by a closed bounded set F c R 3 with comple- 
ment  lq = R 3 - F. The common boundary OF = 0f l  is assumed to be a smooth surface. It will be convenient 
to let the origin of coordinates lie in F and 

r c {xllxl ~ s}. (1.3) 

It is also assumed that 

8 + So < [Xo[, (1.4) 

(the transmitter, and scatterers are disjoint) and 

r < Ix0l - s - s0, (1.5) 

(the sources cease acting before the signal reaches the scatterers). 

The total acoustic field produced by the transmitter is the presence of the scatterers F is the solution 
u (t,x) of (1.1) in R x fI that satisfies the boundary condition 

O__u_u = ~..  V u = O, (1.6) 
Ov 
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for (t,x) E 11 x 0 l l ,  where ~" is a normal to Of/,  and the initial condition 

u (t,x) = 0 for t < to and x E 1). (1.7) 

The corresponding signal field uo(t,x),  generated by f ( t , x )  when no scatterers are present, is given by the 
retarded potential 

1 f~3 f ( t  - ix - x ' l , x ' )  Uo(t,x) [,~ --x~T ax', (1.8) 

where d x ' =  dx; dx~ dx~ . The sonar echo u~(t,x) produced by the source function f and the scatterers F is 
defined by 

us(t,x) = u ( t , x ) - u o ( t , x ) ,  t E 11, x E f~. (1.9) 

Both suP p Uo(t,') and supp u(t , . )  are contained in { x [ [ x -  xo[ ~< t - t o  + ~5o} which is disjoint from F for  
t -  to+~o~< I x o l - ~ .  It follows that 

u~(t,x) = 0 for t ~< to + [x0l - 8 - 60 a n d x  E I I .  (1.10) 

The goal of this paper is to calculate u~(t,x), especially in the far field (Ix[ > > 1) and to analyze its depen- 
dence on the source function f and the scatterers F. 

THE WAVE OPERATORS AND PULSE MODE SONAR ECHO STRUCTURE 

The starting point for the calculation of us (t,x) below is a construction of u (t, F) in the Hilbert space 
L2(f/) .  To describe it let 

L ~ ( f ~ )  = { u ( x ) i D ~ u ( x )  E L2(I~) f o r 0  ~< I,~l < m}, (2.1) 

where o~ = (al ,a2,  a3), [a [ = a l  + a2 + a3 and D ~ = 01'~l/0x~ 1 0x~ 2 0x33. Then the operator 
A :L2(I~ ) ~ L 2 (f l )  defined by 

D ( A )  = L ~ ( O )  Cl {ulou/O~ = 0 on 01I}, (2.2) 

Au = - V2u for all u E D ( A ) ,  (2.3) 

is selfadjoint and non-negative (see [1] for details). The solution of the initial-boundary value problem (1.6), 
(1.2), (1.7) is given by Duhamel's integral [2]: 

u (t, ') = 1" t {A_l/2 s i n ( t - r ) A l l 2 } f ( r ,  ")dr, t  >/ to. (2.4) 
• / t o 

In particular, for t >/ to + T 

u (t, .) = f £  °+ r {A - v2  sin(t - r ) A  V2}f(z ,  ")dr = Re{v(t, .)}, (2.5) 

where 

ft 
to T 

v(t, ") = i A -W2 exp{- i ( t  - r )A1/2} f ( r ,  . )dr  = exp{-itA1/2}h, (2.6) 
0 

and 

= i "Lo °+ TA-I/2 exp{i~'A 1/2}f(% ")dr. (2.7) h 

In the special case where lI = R 3 (no scatterer), the operator A will be denoted by Ao. Thus 
Ao:L2(113 ) ~ L2(113), defined by D (A o) = L]  (1l 3 ) and Aou = - V 2 u ,  is self-adjoint in L2(113) and the signal 
uo(t,x) is given by 

where 

and 

Uo(g ') = Re{v0(g .)},t >/ to+  T, 

Vo(t, ") = exp{ - i tA  ~/2 } ho" 

ho = i f t l  °+ rA~-ll2 exp (i~Adl2is(r, .)dr. 

To compare u (t,x) and Uo(t,x) introduce the operator J:L2(f~)  - -  L2(R 3) defined by 

(2.8) 

(2.9) 

(2.10) 
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/ 

J h ( x ) = l j ( x ) h ( x )  for x ~  12, /o for x E 113 _ 12, (2.11) 

where j E C ~ ( ~ ) )  , 0~< j ( x )  <, 1, j ( x ) =  1 for Ix[ ~>8, and j ( x ) = O  in a neighborhood o f F .  J i s  a 
bounded operator with bound I]J]] = 1, It will be convenient to extend the definition (1.9) of u s by defining 
us(t,x) = Re{vs(t,x)}, where 

Vs(t,x) = Jv( t ,x )  - v0(t,x), t E 11, x ~ 113. (2.12) 

The calculation of  the far field form of Us(t,x) will be based on the theory of wave operators as developed 
in [1]. The wave operators IV+ and W_ are defined by the strong limits 

W e = s - lim exp{itA~/2} J exp{-itA1/2}. (2.13) 

It is shown in [1] that these limits exist and define unitary operators W ±  :L2(12) ~ L2(113). It follows that, 
for each h E L2(12), 

Jv(t, ") = J exp{ - itAX/2}h = exp { - itA~/2} W+h + o,(1), t ~ + ~ ,  (2.14) 

where ot(1) denotes an L2(113)-valued function of t that tends to zero in L2(113) when t ~ ~ .  Equations 
(2.14) and (2.9) imply that 

Vs(t,.) = e x p { -  itA~/2l(W+h - ho) + o,(1) , t ~  co. (2.15) 

This result is used below to calculate the far field form of  us (t,x) = Re{v s (t,x)} . 

3. T H E  F A R  F I E L D  A P P R O X I M A T I O N  A N D  T H E  S C A T T E R I N G  O P E R A T O R  

The scattering operator for the scatterer F is the unitary operator S in L 2 (113) defined by 

S =  W+WL, (3.1) 

where IV_" denotes the adjoint of W_. A connection between S and the approximation (2.15) will be derived 
by calculating the relationship between h and ho. Equation (1.10) implies that Vs( t ,x )~  0 for 
to + T ~< t ~ t o + Ix01 - 8 - 80 and x E 113 . It will be convenient to choose 

to = - Ixol + 80 + 8, (3.2) 

so that the arrival time of the signal at F is non-negative (see (1.10)). With this convention, 

J exp{ - itA1/2}h = exp{ - itA~/2}ho for tl ~< t ~< 0, (3.3) 

where 

t 1 = t o + T = - Ix01 + 80 + 8 + 7:. (3.4) 

Taking t = 0 in (3.3) gives Jh = h0, while taking t = tl gives 

exp {itlA 1/2 }J exp{-i t lA 1/2} h = h0. (3.5) 

The scatterer F is in the far field of the transmitter if Ix01 > >  1 or, by  (3.4), if tl < <  - 1 .  Combining this 
with (3.5) and the definition (2.13) gives 

ho = W_h + Oxo(1), Ixol - -  o% (3.6) 

where ox0(1) is an L2(113)-valued function of x 0 that tends to zero in L2(113) when Ix0[---' co. Multiplying 

(3.6) by S gives 

W+h = Sho + Oxo(1), Ixol - -  ~ ,  (3.7) 

because IV_" IV_ = 1 (W_ is unitary). Combining (3 .7 )and  (2.15)gives 

Vs(t, .) = exp {-itAd/2 } (S - 1)h 0 + or( l)  + Ox0(1). (3.8) 

Note that the term Ox0(1) tends to zero in L2(113 ) when ]x0[ ~ ~ uniformly in t because exp {-itA~/2 } is uni- 

tary. Equation (3.8) shows that, in the far field approximation, the dependence of the echo waveform on the 
scatterer is determined by the scattering operator. 

The approximation (3.8) is used in See. 6 to derive an explicit integral formula for the far field echo 
waveform. The derivation is based on a known integral representation for S, formulated in Sec. 4, and the 
theory of asymptotic wave functions of [1] which is summarized in Sec. 5. 
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4. THE STRUCTURE OF THE SCATTERING OPERATOR 

The steady-state theory of scattering and associated eigenfunction expansions for A are reviewed briefly in 
this section and applied to the construction of the scattering operator for F. 

A 0 is a selfadjoint operator in L2(F, 3 ) with a purely continuous spectrum and the plane waves 

Wo(X, p) = (2~-) -3/2 exp{/x.p}, p E H( 3, (4.1) 

are a complete family of generalized eigenfunctions. The corresponding eigenfunction expansion is the well- 
known Plancherel theory of the Fourier transform (see [1], Chap. 6). 

Generalizations of the Plancherel theory to acoustic scattering by bounded objects were first given by N. 
A. SHENK [3] and Y. SHIZUTA [4]. In this work the generalized eigenfunctions are the distorted plane waves 

w±(x,p) = Wo(X,p) + w~ (x,p), x E fl ,  p ~ R 3, (4.2) 

which are characterized by the properties that w± (x,p) is locally in D (A) (i.e., ~bw± (.  ,p) ~ D (A) for all 
~ c ~  ° (1~ 3))  , 

( V  2+ [pl2)w±(x,p)= 0 f o r x  E ~ ,  (4.3) 

0w~ [ I o 1 Ixl ~ (4.4) 01xl :F ilplw~ = ~ ,  - . 

For the existence, uniqueness and construction of w± (x,p) see [1-5]. Physically, w~ (x,p) is the steady-state 
scattered field produced when the plane wave (4.1) is scattered by F. It has the far field form [1,2] 

e±ilpllxl I ] 0 1 Ix[ - -  oo, (4.5) w~ (x,p) = ~ T±([p[O,p) + - ~  , 

where 0 = x/Ixl .  T± (p,p'), the scattering amplitude or differential scattering cross section of F , is defined for all p 
and p '  in R 3 such that ]p[ = [p'[ and has the symmetry properties 

T± (p,p') = T± (-p ' , -p)  = T:~(p,-p') = T± (-p,-p ' ) ,  (4.6) 

where the bar denotes the complex conjugate. 

The connection between S and T± (p,p') is based on the eigenfunction expansion theorem for A. The 
latter states that, for all h 6 L2([~), the limits 

h±(p)= (d)±h)(p) = L2(R3) - l im  f ,  w±(x,p) h(x)dx, (4.7) 
M ~  ~ "  M 

exist, where l I u  = 12 N {x][x[ < M}, and 

h (x) = L2(~q)-l im [, ,_. w± (x,p)h± (p)dp. (4.8) 
M ~  ¢ IP I < ' M  

Moreover, the operators ~ ±  :L2 ( f l ) ~ L 2  (R3) are unitary and for each bounded measurable function • (~) on 
X>~0,  

( ~ ± ~  (A)h)  (p) = • (IP 12)qb±h (p). (4.9) 

The Fourier transform will be denoted by 

f~(p) = (dph)(p) = L2(R3) - l im  1], Wo(X, p) h(x)dx. (4.10) 
M ~  ~ lX < M 

An exposition of the eigenfunc~tion expansion theory is given in [1]. In what follows the relations (4.7), (4.8) 
are written 

~±(v) = y~ w~--~-(~-~h(x)dx, (4.11) 

h (x) = yi~ 3 w± (x,p)h+ (p)@, (4.12) 

for brevity. However, the integrals are not convergent, in general, and (4.11), (4.12) must be interpreted in 
the sense of (4.7), (4.8). 

The wave operators W± defined by (2.13) are known to have the representations [1] 

W+ = (I)*(P_, W_ = ~*¢P+. (4.13) 
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Combining (4.13) and (3.1) gives the representation 

S = W+W_* = dp*~cb, (4.14) 

where the operator 

,~ ffi ~P-gP+, (4.15) 

is called the S-matrix for the scatterer F. The operator S - 1 has the integral representation 

i l p [  
(S - 1)/~ (p) = ~ f s  2 T+(p, IPlO')~(IPlO')dO', (4.16) 

whose kernel is the differential scattering cross section of F. The integration in (4.16) is over the points O' of 
the unit sphere S 2 in R 3 . The first proof of (4.16) for acoustic scattering is clue to SHENK [3]. 

5. PULSE MODE SONAR SIGNALS IN THE FAR FIELD 

The signals uo(t,x) originate in the region Ix - x01 ~< 80 and reach points x in the far field, characterized 
by Ix - x01 >>  1, after a time interval of magnitude comparable with Ix - x01. Hence, the far field form of 
Uo(t,x) coincides with its asymptotic form for large t. The latter is provided by the theory of asymptotic wave 
functions developed in [1]. The theory is applied here to determine the far field form of Uo(t,x). 

The complex wave function v0(t,x) defined by (2.9), (2.10) has the Fourier representation 

vo(t,x) = (2~)-3/2 f R  ~ exp{i(x'p-tlpl)}ho(p)dp. (5.1) 

Equations (2.10) and (4.9) imply that 

ho(p) = (27r)1:2i [p I-1)( - IPl,P), (5.2) 

where 

j?(oJ,p) ffi (2~-)-2yR4 exp{-i(toJ + x.p)}f(t,x)dtdx, (5.3) 

is the 4-dimensional Fourier transform of f. Note that (5.2) suggests the concept of a nonradiating source func- 
tion. f is said to be nonradiating if 

f ( t , x )  ffi 02uo/0t 2 - V2u0,  suppu 0 bounded in ~x 4. (5.4) 

In this case h0(oJ,p) exists, and (5.4) is equivalent to 

~( ,o ,p )  ffi ( I p F  - ,o2)~0(o, ,p) .  (5.5) 

Equations (5.2) and (5.5) imply ho(p) ffi 0 ands hence, Uo(t,x) = 0 for t >/ to + T. 

The asymptotic wave function associated with l:o(t,x) = Re{v0(t,x)} is defined by 

u~ (t,x) = s ( l x l - t , o ) / I x l ,  x ffi Ixlo, (5.6) 

where s E L2(lq. x S 2) is defined by (see [1], Ch. 2) 

s (~ )~R~I (2~r )~ t / 2y~exp{ i~c~} ( - i~J )h~ (c~ )dc~=Re{y~exp~ i~J} f ( -~J~c~)d~} .  (5.7) 

Direct calculation of s (z, 0) from (1.8) yields the alternative representation 

1 fR3f(_,r+O.x,x)dx. (5.8) s ( r , o )  = 

It was shown in [1] that u~ ° describes the asymptotic behavior of u0 in L2(R 3 )for t ---' oo: 

Uo(t, ") = u~ (t, .) + ot(l),  I ~ co. (5.9) 

The integral 

1 E(u,K,t) = ~ YK {IVu (t,x)12 + (Ou (t,x)/Ot)2}dx, (5.10) 

may be interpreted as the acoustic energy in the set K C F, 3 at time t. It was shown in [1] that, if 
h 0 E L~ (1~ 3 ), then u~ ° (t,x) converges to Uo(t,x) in energy when t ---' co. More precisely, 
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OUo(t,x)/Oxj = u~,j(t,x) + o,(1), t ~  0% j = 0, 1, 2,3, 

where x0 = t, 

u~i (t,x) = s j ( I x l -  t,O)/Ixl, 

so(~ ' ,o )  = - O s ( ~ , o ) / o ~ ,  

and 

s t i r ,0)  =-Ojso('r,O) for j =  1,2,3. 

The result (5.11) was used in [5] to calculate the asymptotic distribution of energy in cones 

C= { x f  rOlr > 0,0 ~ Co cS2}.  

Applying the results to the signal Uo(t,x) generated by f(t ,x) gives 

E(uo, C, oo) = }ira E(uo, C,t) = rrfc If¢(- [p ],p)[2dp. 

In particular, the total signal energy introduced by the source function f is 

E(u0, R3 ,~ )  = ,r fR3 I f ( - I P I ' P ) I 2 d P "  

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

6. PULSE MODE SONAR ECHOES IN THE FAR FIELD 

Equation (3.8) implies that the echo Us(t,x) satisfies 

us(t, ") = Re{exp(-itA1/2)(S- 1)ho} + or(l) + ox0(1). (6.1) 

The first term on the right has the same form as the signal but with h 0 replaced by (S - 1)h0. It follows from 
the results of Sec. 5 that 

us(t,x) = uS (t,x) + o,(1) + Ox0(1), (6.2) 

where 

u s (t,x) = e ( l x [ -  t ,o)/lxl,  x = Ixlo, (6.3) 

and 

o) Re{ (2,1T) -1/2 e (z, = Jo~ exp(irto) (- i to) ((S - 1)hoJ'(toO)do}. 

Now by (4.14) 

((S - 1)ho) = q~(S - 1 )***ho  = (S - 1)/~o, 

and hence, by (4.16), 

ito f s  2 T+(toO,toO,)~o(toO,)dO," ( ( S -  1)ho)(~O) 2(2~-)V 2 

Combining (6.4) and (6.6) gives 

e(r,O)=---'~Re(fo~exp(irto)tO2ys2T+(toO,toO')ho(toO')dO'dto}. 

Finally, by (5.2), 

e(r,O) 1----J-~Re{ifo~exp(iT'to)tOfs2T+(toO,oO')fc(-to,ojO',dO'dto} 
2(2rr)V2 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

Equation (6.2) implies that uF gives the far field form of us. For [xo[ > >  1,F is in the far field of the 
transmitter and the term ox0(1) is small, uniformly for all t. For receivers in the far field region Ixl > >  1 for 
F , the echo us(t,x) arrives at times t > >  1 and hence the term or(l) is small. 
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7. CONCLUDING REMARKS 

Actual sonar transmitters do not, of course, generate signals by means of a source function f ( t , x ) .  How- 
ever, the purpose of a well designed transmitter is to generate a signal with a prescribed waveform s('r,O). 
Now, 

~(r.o,O) = 1 f 2  exp (-icor)s(~-,O)d'r = (¢r/2)l/2fc(-oJ,¢oO), (7.1) 
(2,n-) 1/2 

(see (5.7)) and, hence, 

e(r,O) = Re ~ exp (i~-~)co 2 T+(o~O,oJO')2~(~,O')dO'dco . (7.2) 

In particular, the transmitter characteristics influence the echo waveform only through s (r,O). Hence, (7.2) is 
applicable to real transmitters with known waveforms s (~', 0). 

It is known that T+(coO,~O') is a meromorphic function of co with poles in the lower half plane [5]. The 
other functions in the integrand of (7.2) are entire holomorphic functions. Hence, the integral in (7.2) can be 
transformed by deforming the contour of integration in' the complex co-plane. This leads to an expansion of the 
echo waveform of the type occurring in the singularity expansion method [6]. 
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ABSTRACT 

Problems in classical scattering, the Dirichiet, Neumann,  and transmission problems for the Helmholtz 
equation, and the problem of a perfect reflector for Maxwell's equations are formulated as problems in integral 
equations. The spectrum of the integral operators is shown to vary in each case. However, a result from func- 
tional analysis on the perturbation of spectra is used not only to establish existence and uniqueness, but also to 
provide an iterative method for actually constructing the solution in each example. 

INTRODUCTION 

Integral equation methods in classical scattering have proven to be very powerful in establishing existence 
and uniqueness of solutions. Moreover, integral equation formulations underlie most constructive solution 
methods, exact and approximate, with the notable though restricted exception of separation of variables. 

For closed bounded obstacles which perturb an incident time harmonic acoustic or electromagnetic field, 
one often reduces the problem of determining the scattered field to that of  solving a Fredholm equation of the 
second kind. Symbolically this equation takes the form 

( l - -  Kk)U ~ f 

where u is the desired field quantity, f is a known function usually given in terms of the incident field, K~ is a 
bounded, linear, operator-valued function of the parameter k, and I is the identity operator, More sugges- 
tively, the equation may be written as ( h i - K k ) U  = f a n d  the solution is sought when ~. = 1. The operator Kg 
can often be shown to map some Banach space B into itself and the existence of ( 1 - K k )  -I ,  that is whether 
~. = 1 is a resolvent point of K~,, is to be established. Recall that the spectrum of Kk, cr (Kk) , is the set of  all 
(possibly complex) numbers  h for which either 0 ~ I - K k )  -1 does not exist, is unbounded, or the range of 
X l - K k  is not dense in the Banach space B. If Kk is compact then o-(K~) = {hlKku = hu for some u EB}. 
The resolvent set is the complement of the spectrum, and the spectral radius, ro (Kk) , is the radius of  the 
smallest circle in the complex h-plane containing the spectrum i.e. 

r , , (Kk)= SU {IxI}. 
xco-(~ k) 

Two results from functional analysis allow for an explicit construction of ( I -  Kk) -1 in the form of a Neu- 
mann series, (see e.g. [1], §5) 

Theorem 1. l f  r~ (K k) < 1 then ( I - g k )  -1 = ~ g~. 
n=0 

Theorem 2. I f  r~ (K o) < 1 and K k is continuous in k at k = O, i.e. lim [[K k - K0]l = O, then ( I -  Kk )-1 
k~O 

= ~ K~for [k] sufficiently small. Here I].ll is the norm of  the Banach space B. 
n=O 

We illustrate how these results may be used to construct inverse operators for small k and thus solve the 
equations for some well known problems in classical scattering, viz., the Dirichlet, Neumann,  and transmission 
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problems in acoustic scattering, and the problem of a perfect conductor in electromagnetic scattering. In each 
of these cases, the reduction to an integral equation is well known. However, the standard integral operators 
have different spectral properties. In the electromagnetic case the spectral radius is less than 1 so that Theorem 
2 may be applied directly; in the Neumann problem the spectral radius is 1 but k = 1 is in the resolvent set; 
whereas in the Dirichlet case the spectral radius is again 1 but this time X = 1 is in the spectrum. The 
transmission problem is shown to be a generalization of the Neumann problem. In each of these cases it is 
shown how Theorems 1 and 2 may be used to construct the solution. 

All of the problems will involve a scattering surface S which is closed and bounded and divides Euclidian 
space R n into an interior Si~ and an exterior Se~ (see Fig. 1). In the Dirichlet problem the dimension n is 2, in 
the Neumann and electromagnetic cases n is 3, while the transmission problem is treated for arbitrary n. The 
surface S will be assumed to be Lyapunoff (see, e.g. [2]), in which case it has a H61der-continuous normal 
everywhere, or piecewise Lyapunoff, consisting of a finite number of segments of Lyapunoff surfaces. On each 
segment the normal exists and is H61der-continuous but the normal may not be continuous from one segment 
to another; hence, the entire surface may only have a normal almost everywhere. An additional requirement is 
needed in the piecewise Lyapunoff case, namely a two-sided cone condition. That is, there must be positive 
constants a and h such that each point of S is the vertex of two cones of half-vertex angle a and height h, one 
lying in Sin and one in Sex. Points will be denoted by x, y, etc. and these represent vectors with appropriate 
dimension, e.g., x ~ (xl,x2,x3). The unit normal will always point from S into Sex and will be denoted by hy 
where the subscript indicates the point on S at the base of the normal. 

1. ELECTROMAGNETIC SCATTERING BY A PERFECT 
CONDUCTOR IN ~3 

As our first example, we treat what is perhaps physically the most complicated of all the cases we shall 
consider, but curiously is the simplest from a functional analysis viewpoint. The problem of perfect reflection 
is one of finding electric and magnetic fields E(x)  and H ( x )  which are vector valued functions in N3 of points 
in Sex. Specifically we seek 

E = ES+ E t, H =  HS+ H ~, (1.1) 

where E ,  H '  is a known incident field and the scattered field satisfies 

~7 x HS= - ito~E s , X7 x Es=  itolzH s, xESex, (1.2) 

? x V x ES + ikES~ ? x XT x HS + ikHS = o [ l l, uniformly in ?, (1.3) 

and 

(1.4) h x E S ~ - h x E  ~, h . H S = - h . H  i, xES, 

X where ? ~ -~]-,  k = to ~x/~, and to, c , /z  are the frequency, permittivity, and permeability respectively. 

By standard analysis [3,4], this problem may be reduced to solving a boundary integral equation for the 
unknown components of H (i.e., h ×H) as follows: 

x H ( x ) ' 2 h x  x f¢~yGa(x ,y ,k )  x [hy x H ( y ) ] d S y  = 2hx x Hi(x) ,  xES,  (1.5) ~x 
eik I x-y [ 

where Ga(x,y,k) 4"rr I x -y  I" Actually, (1.5) holds only for S Lyapunoff (not piecewise Lyapunoff) and 

although corresponding integral equations may be derived for nonsmooth boundaries the subsequent analysis 
does not easily generalize. Therefore, in this example we require S to be Lyapunoff. Equation (1.5) may be 
written in operator form as 

J -  KkJ = 2hx x H', (1.6) 

where J(x)  ~ h x x H ( x )  and Kk is defined through (1.5). The spectral properties of Ko have been studied by 
MOLLER and NIEMEYER [5], KRESS [6,7], and WERNER [8], with more stringent smoothness require- 
ments on S. GRAY [9] has extended these properties to the case when S is Lyapunoff. Taking the Banach 
space to be Cr(S),  continuous vector valued functions on S with vanishing normal component with the usual 
supremum norm, the following facts have been established. 

Kk is a compact mapping of Cr(S) into itself and o'(Ko) C (-1,  1), and thus r,~(Ko) < 1. Moreover, 
I l gk -  go II ~ o (k2). Thus, all of the requirements of Theorem 2 are satisfied and the solution of (1.6) is 
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J = ~,  Kf,(2h x H ' )  
n~O 

for I k I sufficiently small. 

(1.7) 

2. EXTERIOR N E U M A N N  PROBLEM IN F, 3 

Now we consider an example where r~ (Ko) = 1 but 1 q'o-(Ko). This arises in the well-known Neumann  
problem in acoustic scattering. Here we wish to determine the velocity potential 

u(x)  = ui + u s , (2.1) 

where u i is a known incident field and the scattered field satisfies 

( V  2 + k2)u s =  O, xESex, (2.2) 

and Ous ¢9ui xES, (2.4) 
On On ' 

where r = Ix l and ~ = x .  
r 

When S is Lyapunoff, this problem may be reduced to the following boundary integral equation [10]: 

u ( x ) ,  2 L  G3(x.y.k , )dsy = 2u'(x). x S. (2.5) 

where G3(x,y,k) is the free space Green 's  function defined in (1.5). 

In operator form, with (2.5) providing the definition of Kk, 

Kku = 2u i. (2.6) 

The fact that S is Lyapunoff enables one to show that Kk is a compact mapping of C(S)  into C(S)  with the 
usual sup norm (see e.g. [2]). We could write (2.6) in the form 

(~ . I -  Ke)u = 2u5 (2.7) 

where the solution is sought for h = - 1 .  However even for k = 0 this equation cannot be solved directly by 
iteration because h = 1 is an eigenvalue. This is part of Plemelj's theorem (see e.g. [11], Sec, 9) which estab- 
lishes that the eigenvalues of Ko are real, k = 1 is a simple eigenvalue and Ix l < 1 for all other eigenvalues. 
Thus h = - 1  is not in the spectrum of Ko. However, the spectral radius of  Ko is equal to 1; hence, direct 
iteration of (2.6) is not possible. 

To overcome this difficulty in potential theory (k = 0), Neumann proposed a method subsequently shown 
(see e.g. [12,13]) to shift the unwanted eigenvalue into the interior of the unit circle. The method essentially 
consists of  defining a new operator 

1 -  Ko 
Lo 2 (2.8) 

which transforms the eigenvalue equation for Ko, 

Kou = Xu, (2.9) 

into 

1 - h  
Lou = T u =/zu.  (2.10) 

This has the effect of transforming X = 1 into/z = 0 and X = - 1  into/z = 1 as shown in Fig. 2. Thus, under 
this transformation r,~(Lo) < 1. KRESS and ROACH [14] have shown that (2.8) is not the optimal transfor- 
mation in the sense of achieving the min imum spectral radius of the transformed operator. They propose a 
different transformation which was shown by KLEINMAN [15] to be optimal when all the eigenvalues of  K o 
have the same sign. 
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These results have been applied to the scattering problem (k ~ 0) by AHNER and KLEINMAN [16] and 
KLEINMAN and WENDLAND [17], who generalized Neumann ' s  method as embodied in (2.8) in the obvious 
manner,  defining a new operator to be 

l - -  Kk 
Lk = 2 ' (2.11) 

in which case the integral equation to be solved, (2.6), becomes 

( I -  Lk)U = u i. (2.12) 

They also showed that 

I l Z k -  Zoll = O(k2), (2.13) 

which, together with the fact that r,~(L o) < 1, allows us to apply Theorem 2 to (2.12), which then has the 
solution 

u = ~ L~u i (2.14) 
n~0 

for I k I sufficiently small. 

If S is not smooth the argument is slightly more complicated because the operators are no longer compact. 
Here we must  employ the idea of the Fredholm radius (see e.g. [18], Sec. 85) which identifies values of  h for 
which the essentials of  compactness, namely discrete spectra and applicability of Fredholm's  alternative, still 
apply. Here we use Radon's  theorem generalized to three dimensions [19], which ensures that for piecewise 
Lyapunoff surfaces with a two-sided cone condition with height h and half-vertex angle c~, the Fredholm radius 
of Ko is co = cosc~ < 1. There is still an eigenvalue of Ko at h = 1, but the spectral picture, as shown in Fig. 
3, is a little more complicated. There are two cases, depending on whether or not the smallest eigenvalue, ),1, 
is larger or smaller than the negative of the Fredholm radius, but the essential feature is that the spectrum and 
the non-Fredholm points of  L o are all contained in a circle of radius less than 1 and/~ = 1 is the value for 
which the solution is sought. Despite the presence of corners, the integral equation to be solved is still given 
by (2.12), and the estimate (2.13) is still valid [17]. Thus,  the conditions for applying Theorem 2 remain 
satisfied and the solution is still given by the Neumann  series 

u = ~ Lieu i 
n=O 

for ] k I sufficiently small. 

3. TRANSMISSION PROBLEMS IN ~'~ 

The preceding example may be subsumed under a more general setting scattering of an acoustic wave 
from a penetrable object in which both the density and propagation velocity differ from the exterior medium. 
Mathematically, the problem may be formulated in R n for any n >i 2. As before, we seek a function 

u(x)  = ui(x) + uS(x), x E •  n, (3.1) 

such that 

(V 2 + k3)u s =  O, xES~x, (3.2) 

(~2 ..[. ki2(x))u = O, x E g i n ,  (3.3) 

uS= e %r ] ~  (3.4) 

u+(x) -- u - (x ) ,  XES, (3.5) 

1 Ou + 1 Ou- 
x E S, (3.6) 

pe On pi On ' 

where + denotes the limit from Sex, - from S~,, ke is constant with Im ke >1 O, kj(x) is a bounded function of 
x in S~n tO S, and S is a piecewise Lyapunoff surface with a two-sided cone condition. 

It has been shown [20] that the solution to this problem admits of  the representation 



21 

pe l f s [U(X)_U(y ) ]  OG, u ( x ) -  1--~i  ...... -~y  (x,y,O)dSy 

ke)"  

pe fsi  G'(x'y'ke)[k}-kr2(v)]u(y)d'rY ~ u~(x)' x~ l l ' ,  (3.7) 
Pi n 

n-2 
i [ ~ k  ] T  rr(1) //(1) where G,(x,y,k) = - 7  ~ ' ' l /2~rlx-yll  ,~_ ( k l x - y D .  is the Hankel function of the first kind, and 

i eik Ix-y I 
when n = 2 or 3 we have G2(x,y,k) = - -~  Ho(1)(klx-yl)  and Ga(x,y,k) ' = 4"rr[x-y['  respectively. In 

operator form (3.7) may be written 

While (3.8) holds for all x~l l" ,  observe that if the interior density pg becomes infinite and x is restricted to S, 
(3.8) reduces to the n -dimensional form of the Neumann problem (compare with (2.12)). If Pe ~ Or and x is 
restricted to Sj,, then (3.8) is the n -dimensional form of the equation which is the basis for the Born approxi- 
mation. Even if S has corners, both Lk, and M map C(SU S~,) into itself, where C(SU Si,) is the space'of 
continuous functions on the closure of St,, equipped with the usual sup norm. Restricting x to lie in Si, U S in 
(3.8), yields an integral equation of the second kind. 

The extension of the Plemelj and Radon results to higher dimensions is straightforward if S is smooth 
[1l], but quite complicated if S has corners [17,19,21,22]. Assuming the validity of this extension, then the 
spectral radius of Lo, restricted to functions defined on S (the Neumann case), is less than one as before. 
Moreover, the spectral radius of Lo cannot increase when Lo acts on functions defined on SU Srn (it may 
decrease but not increase). Thus, for the operator defined in (3.7) and (3.8), 

r,~(Lo) < 1. (3.9) 

Hence, 

[(  ell r~ 1- -~ j  Lo < 1, (3.10) 

provided 

1 -  p~ < 1 . (3.11) 
P r r~ (Lo) 

With this restriction on p-2-~ it is easy to establish that 
Or 

1 - -~i L ~  + 1 - Lo < ~ (3.12) 
Pi Oil II 

forany , prov,ded and [ik2_k2[[ are sufficiently small. Again, the conditions of Theorem 2 

may, therefore, be satisfied and (3.8) has the solution 

Pe Pe (3.13) u = 1., 1 -  Lk~ n=O Z "4- 12 i, 

pr°videdll- ,] e'l-Oe'and o, JJ :- i "aresu c entlysmall 

4. EXTERIOR D I R I C H L E T  PROBLEM IN ~2  

As a final example, we consider a problem which involves solving an integral equation of the second kind 
at an eigenvalue. The nonuniqueness which is implied by Fredholm's alternative in this case is removed by 
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utilizing additional properties of the solution. The boundary value problem in this case, the Dirichlet problem 
for the Helmholtz equation, is again that of determining a velocity potential 

u = ui+ u s , (4.1) 

where u i is a given incident field and the scattered field satisfies 

(V 2 + k2)u s= 0,~ xESex, (4.2) 

[ f(~) + U S= eikrl"-'~r Ol~rll  (4.3) 

u s= -- u i, x~S. (4.4) 

We will consider only the case when S is smooth (Lyapunoff). A standard application of Green's  theorem 
yields the representation 

u(x) -- Ys G2(x'y'k) Ou(y) dS = ui(x), xES~x, (4.5) 
Ony 

and, with the jump condition for the normal derivative of a single layer distribution, we obtain 

OG2(x,Y, k) Ou(y) 9 0u i Ou t "  2 ,Is dSy = xE S. (4.6) 
Oft x On  x Ony -On x ' 

Letting v(x) Ou(x),  we may rewrite (4.6) as 
0nx 

( 1 -  K~)v ffi 2 0ui(x) (4.7) 
Onx 

o r ( X l - K ~ ) v = 2 ~ f o r h =  1. 

The operator K~: is the adjoint of the two-dimensional form of Kk introduced in (2.6). When k = 0, Ko 
(in two dimensions) is the operator which Plemelj originally proved has X = 1 as an eigenvalue. Hence, k ffi 1 
is also an eigenvalue of Ko*. But X = 1 is precisely the value for which a solution of (4.7)-is sought. This 
dilemma was partially resolved by AHNER [23], who showed how to solve (4.7) by projecting onto the orthog- 
onal Complement of the eigenspace correspond to ~. = 1. This, however, requires the explicit determination of 
the appropriate eigenfunction, which is not always trivial, depending on the geometry of S. A treatment which 
accomplishes the projection, but avoids the necessity for finding the eigenfunction of Ko* has recently been 
developed by COLTON and KLEINMAN [24]. Using the properties of u specified in (4.1)-(4.4), (4.6) is 
modified (apparently complicated) to be 

G2(O,y,k) G2(x, O,k) ] 0 u (y) 
Ou(X)onx 2 Ys ~0 G2(x,y,k)-Tr ~og-k "] Ony dSy (4.8) 

= 20ui(x-------~) - 2~r u~(O) 0 
Onx log k On x G2(x'O'k)" 

Ou(x) Denoting the right hand side by v~(x), again letting ~ be v(x) ,  and using (4.8) to implicitly define an 

operator Lk, (4.8) may be written in operator form as 

( I -  Lk)v = v( (4.9) 

L k maps the space of continuous functions into itself (provided S is Lyapunoff). Hence, again we Use the 
Banach space C(S) equipped with the sup norm. The operator Lo, where 

Lov= ( K * v ) ( x ) - - ~  log [xl Ys v(y)dSy, (4.10) 

no longer has h = 1 as an eigenvalue. This is shown by COLTON and KLEINMAN [24], following the ingeni- 
ous work of KRESS [25]. They show that 

r,~(L o) < 1 (4.11) 

and also that 

o[1] IlZk--Loll= ~ • 
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Thus, once again the requirements of Theorem 2 are fulfilled and (4.9) has the unique solution 

v ~ ~ Lkv i 
n=0 

for I k I sufficiently small. 

(4.13) 
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NUMERICAL METHODS FOR HELMHOLTZ-TYPE 
EQUATIONS IN UNBOUNDED REGIONS 
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INTRODUCTION 

It is the purpose of this paper to describe certain numerical methods for approximately solving Helmholtz 
type equations in unbounded regions in two and three-dimensional space, subject to appropriate radiation condi- 
tions at infinity. 

Mathematical problems of this kind arise from the propagation of linear periodic waves through an 
unbounded medium. For example, if we assume harmonic time dependence, the scattering of acoustic waves 
by a bounded obstacle may be mathematically formulated as an exterior Dirichlet or Neumann problem for the 
Helmholtz equation, (-2x-k2)u ~ 0 (see Sec. 1.1 for a precise formulation of the problem). In addition, vari- 
ous problems relating to underwater acoustics and the scattering of electromagnetic waves in a waveguide may 
be formulated in terms of the Helmholtz equation in regions with infinite boundaries, as described in Sec. 1.5. 

There are various difficulties in the numerical treatment of problems of this type. These include the 
unboundedness of the region under consideration, the oscillatory nature of the solutions and the fact that the 
resulting matrix equations are indefinite when the frequency is large. The last two questions will be briefly dis- 
cussed in Sec, 3. This paper will be mainly concerned with techniques for replacing the given problem by an 
approximate or equivalent problem on a bounded region and then discretizing the resulting problem. 

We shall refer to the numerical techniques discussed in Sec. 1 as direct discretization methods. These 
methods consist of first introducing an artificial boundary, F~, at a sufficiently large distance from the origin. 
Appropriate radiation boundary conditions are then imposed on F~ in order to approximately incorporate the 
asymptotic behavior of the solution at infinity in the numerical method. Two recently developed techniques for 
constructing highly absorbing radiation boundary conditions will be discussed in Sec. 1.2. Finally, the resulting 
boundary value problem is discretized using either finite difference or finite element methods. Finite element 
methods take account of the boundary condition on F~ in a natural way and are described in Sec. 1. 

In Sec. 2, we shall describe an alternative approach based on reformulating the exterior problem as an 
integral equation on a bounded surface. A few different integral equation formulations will be described in Sec. 
2.1. In Sec. 2.2, we discuss numerical techniques for solving the resulting integral equations. In Sec. 2.3, we 
consider techniques for coupling direct discretization and integral equation methods. 

Finally, we remark that analytic and asymptotic methods have been extensively employed for solving 
problems in linear wave propagation. For a survey of these methods as well as the kinds of physical problems 
for which they are applicable, see [1] and the references cited there. 

1. DIRECT DISCRETIZATION METHODS 

1.1 The Exterior Problem 

We begin by describing the exterior Dirichlet problem for the Helmholtz equation in 113, three dimen- 
sional Euclidean space. Let B denote a bounded region in 113 with smooth boundary, I', and let II denote the 
complement of BUF in 1/3. Suppose that the complex-valued function u(x) satisfies the following problem: 
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and 

( - A - k 2 ) u ( x )  = 0 in II,  

l imr Ou(x) _ iku(x) = O, 
r ~  O r 

(1.1) 

(1.2) 

u(x)  = g(x)  o n r ,  (1.3) 

where x = (r,~0, 6)  is an arbitrary point in ~ = 1~ U F, (r, 0, ~b) denotes spherical polar coordinates, a denotes 
the Laplacian, g(x )  is a smooth function defined on F, and k;~0 is a real number.  The exterior Neumann  
problem is defined by (1.1), (1.2), and 

Ou(x) g (x )  on F, (1.4) 
On 

where n denotes the outward directed normal to F. 

Condition (1.2) is known as a radiation condition and states that u represents an outgoing wave. It is 
well-known that when F and g are sufficiently smooth, there exists a unique solution of the exterior Dirichlet 
and Neumann problems. Futhermore, the free space Green 's  function for the Helmholtz equation is given by 

eiklx - yl 
Fo(x,y;k)= ~ l x -  yl' x,y E •3, x ~ y. (1.5) 

Finally, we observe that there exists an Ro > 0 such that the solution, u (x), of the exterior Dirichlet or Neu- 
mann problem has a uniformly convergent series expansion given by 

u(x)  = eikr ~ TM. an(O,¢,k)r -n for r >/ Ro. (1.6) 
n = l  

A proof of this expansion was given by Atkinson. For a reference to this work as well as various other useful 
results, see [2]. 

Results analogous to those given above are equally valid for exterior Helmholtz problems in R 2. In par- 
ticular, the free space Greens function for p2  is given by 

Fo(x,y;k) = 4 n o < l ) ( k l x -  yl) ,  x,y ~ R 2, x ~ y, (1.7) 

where Ho ~l) denotes the Hankel function of the first kind of order zero. The radiation condition in ~2 analo- 
gous to (1.2) is given by 

}imrl/2 ~ r  - iku = 0. (1.8) 

We also note that the above results as well as the numerical methods to be described in this section apply to 
other boundary conditions, including Robin boundary conditions and mixed boundary conditions (e.g., the Diri- 
chlet condition may be imposed on one portion of the boundary and the Neumann  condition may be imposed 
on the remainder of the boundary). Finally, we remark that the numerical methods to be described in this sec- 
tion are applicable even if the differential operator on the left side of (1.1) is perturbed so as to include variable 
coefficients with bounded support. However, for the sake of simplicity we shall confine our discussion to the 
exterior Dirichlet or Neumann  problem for the Helmholtz equation in ~2 or R3. 

1.2 Radiation Boundary Conditions 

In order to apply a direct discretization [3] method, we shall introduce an artificial boundary F~ enclosing 
0u 

the obstacle as well as an appropriate boundary condition of the form -~n = T(u)  on F=. In order to approxi- 

mate the outgoing solution satisfying (1.2) or (1.8), it is desirable that our boundary condition be highly 
absorbing. For computational reasons, it is also desirable that the boundary condition be local. (Nonlocal 

0u 
means  that in order to compute ~ n  at a point of  F= it is necessary to compute u at each point of  F~) .  We 

shall briefly describe two methods for constructing a hierachy of local, highly absorbing boundary conditions of 
increasingly better accuracy. 
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The first method was developed and applied by ENGQUIST and MAJDA [4,5] to deal with hyperbolic 
mixed initial boundary value problems. Consider, e.g., the wave equation in two dimensions using polar coor- 
dinates. A perfectly absorbing boundary condition that is nonlocal in both space and time was constructed for 
this equation in [4] using the theory of pseudodifferential operators and the reflection of singularities for solu- 
tions of differential equations. This nonlocal condition was then employed to obtain a hierarchy of local, highly 
absorbing boundary conditions for which the resulting initial boundary value problem is well-posed. We shall 
give the first two boundary conditions obtained in this manner, with F~ assumed to be a circle of radius R, 

[00 1 I ~ r  + ~ +  u l r = n = 0  (1.9) 

and 

93 93 1 93 1 02 1 9 2 1  , 
+ 9t 3 2R ~ 9t00"""--- ~ + ~ - ~ - ~  + " ~ " ~ T I U I , =  R ~ 0. (1.10)' 

] 

To apply these boundary conditions to the Helmholtz equation, it suffices to replace z~  by -ik. Observe that 

the boundary operator in (1.9) annihilates spherical waves (i.e., waves of the form r-l/2f(t - r)a (0)). Higher 
order boundary operators such as that in (1.10) also compensate for angular dependence when the wave is not 
quite spherical. 

A second method for constructing a sequence of highly absorbing boundary conditions was developed by 
BAYLISS and TURKEL [6], in connection with hyperbolic problems such as the wave equation. Their method 
is based on the following asymptotic expansion for solutions of the wave equation in ~3: 

u(t,r,O,ob) ~ ~ fs(t-r'0'4~) for r >~ R, (1.11) 
j ~ l  r J  

where R is sufficiently large. Expansion (1.11) generalizes (1.6) and was proved in [6] under suitable assump- 
tions. Their boundary conditions are then obtained by treating (1.11) as a formal expansion, valid for r >~ R. 
The first two boundary conditions obtained in this manner are 

[L++]U~,=R=O, (1.12) 

and 

0 9 where L = ~ r  + 0-~' The sequence of boundary operators constructed in [61 annihilate successively more 

terms on the right side of (1.11). Thus, the operator in (1.13) annihilates f l( t-r ,O,~)r -1 and f2(t-r,O,~)r-2. " 
Finally we note that in 1t. 2, the boundary condition obtained in this way corresponding to (1.12) is identical to 
(1.9). However, the higher order condition corresponding to (1.13) differs from (1.10). 

1.3. Var iat ional  Formula t ion  

We now introduce an artificial boundary, F~, enclosing the obstacle and employ one of the radiation 
boundary conditions discussed above. Specifically, we consider the exterior Dirichlet problem, (1.1)-(1.3), in 

~ t  
R 3 . We choose F~ to be a sphere of radius R and (1.12) as our boundary condition on F~ with ~ t  replaced by 

-ik. Hence we wish to solve the following boundary value problem on On ,  the annular region bounded by F 

(--A --k2)u0 ~ 0 in OR, u0 ~ g on F, and Ouo/Or-ikuo + r-luo = 0 on F~. (1.14) 

It may be shown that (1.14) is a well-posed problem (see, e.g., [7]). Furthermore, it is readily seen that (1.14) 
may be converted into the following problem: 

(--A -k2)v0 = F in f~R,v0 = 0 o n F  andgvo/Or-iKvo + R-iv0 = 0 o n F ~ ,  (1.15) 

where F is a smooth function with bounded support in OR. 

In order to solve (1.15) by the finite element method, we reformulate it as a variational problem. Set f He~{u:[[ul[e< a n d u  0 o n F } , w h e r e J l u l l e  2 [[u 2 _ oo = = IIHI<~R)--3~R(lUl2 + Ixzul2). We nowdefine 
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a ( u , v ) =  y n n ( V u ' V v * - -  k2uv *) - f n = [ i k u v * -  R-luv*],  V u, v E H E, (1.16) 

where v* denotes the complex conjugate of v. The following result may be proved using the argument of [8] 
(Sec. 5.3.2): 

Theorem 1.1. (a) There exists a constant C1 such that 

inf sup ]a (u, v) [ >/ c~IlulIEIIvIIE. 
u E H  E vEH E 

(b) There exists a unique function, v 0 E H E, such that 

a(v0, v) = (F,v) for each v E H E. (1.17) 

Furthermore, v 0 is the unique solution of (1.15). 

Theorem 1.1 (b) follows from (a) as in [8]. Theorem 1.1 (a) will also be crucial in showing that the finite 
element discretization described below is well-posed. We remark that the exterior Neumann  problem as well as 
the other exterior problems previously mentioned may be converted into variational problems in the same way. 
In the case of natural boundary conditions on F such as the Neumann condition, it is not necessary to impose 
any boundary condition on functions in H E . Finally, we observe that 

I lu - u 0 [ t ~ r ( ~ ) ~  0 a s R  --' co, (1.18) 

where D is a fixed, bounded subset of fi  and u - u0 denotes the error between the solution of problem (1.1)- 
(1.3) and problem (1.14). Equation (1.18) may be proved using the argument in [7]. 

1.4. The Finite Element Method 

In order to approximate the solution u of (1.1)-(1.3) we shall first very .briefly describe a finite element 
method for approximately solving problem (1.15) using the variational formulation (1.17). We begin by replac- 
ing H E by a one parameter family of finite dimensional subspaces S h, defined for h E (0, 1]. We wish to 
approximate the solution v o of (1.17) by the solution Vo h of the following discretized version of (1.17): 

a(voh, v) = (F,v), V v  E S h. (1.19) 

h h The finite element subspaces, S ,  are typically obtained by subdividing fl R into simple subsets, tj, of 
h E h diameter O(h).  S may then be defined as the subspace o f / - /  consisting of all continubus functions, v ,  van- 

ishing on F, such that the restriction of v h to each t fl is a polynomial of  degree less than K for some integer 
K /> 2. By expressing vo h as a linear combination of basis functions for S h with unknown coefficients and then 
applying (1.19), we obtain a finite number  of linear equations (resembling finite difference equations) for the 
desired approximate solution, Vo h. 

We observe that in general for curved boundaries F, it is not feasible to construct finite element sub- 
spaces of functions vanishing identically on F. See [8]-[10] for methods of overcoming this difficulty as well as 
detailed descriptions of the finite element method. For natural boundary conditions such as the Neumann  con- 
dition, it is not necessary to impose any boundary condition on functions in S h. (Note that the radiation boun- 
dary condition on F~ is a natural boundary condition.) 

The following approximation property holds for a typical finite element space S n described above and is 
crucial in proving that Vo h converges to v o as h ~ 0: 

i n f l l v o - x l l E  ~< Ch to- 1, (1.20) 
xES h 

where K >/ 2 and C is independent of h. 

Theorem 1.2. There exists a unique function v~ E S h, satisfying (1.19)for h sufficiently small. Furthermore there 
exists a constant C independent of  h, such that 

I lvo - vohl IE ~ Cin f  I Iv0 - X IIE for h sufficiently small. 
xES h 

The proof of  Theorem 1.2 is based on Theorem 1.1 (a) and (1.20), using the argument of  [8] (Sec. 
6.3.2). Note that Theorem 1.2 combined with (1.20) gives the rate of convergence of vo h to Vo. L 2 and L ~ 
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error estimates may also be obtained. We remark that analogous results may be proved for more general radia- 
tion boundary conditions of the type described earlier. 

It may be shown, using the argument in [7], that 

C 
Ilu - u011/~lw) ~< ~--2,  (1.21) 

where uo satisfies (1.14), o- depends on the radiation boundary condition, D is a fixed, bounded subset of I~, 
and C is independent of R. Since Uo may be readily expressed in terms of Vo, we may employ vo h to obtain an 
approximation, uo h, to u0. We thus obtain 

Ilu - uohll,l(D) ~< Ilu -- u0 l iz ,<m + I luo- uohllm(D). (1.22) 

The last term in (1.22) is a discretization error and may be estimated using Theorem 1.2. The first term on the 
right side of (1.22) may be estimated using (1.21). For this term to be small, we require R to be large, thus 
increasing the number of linear equations. For further details concerning this method, see [7]. 

1.5. Regions With Infinite Boundaries 

There are various wave propagation problem s in which it is desired to solve a Helmholtz type equation in 
a region with infinite boundary. In many cases, the radiation condition is expressed in terms of a modal expan- 
sion for the outgoing solution (sufficiently far away from the origin), instead of condition (1.2) or (1.8). A 
variety of such problems were treated in [11] and [12], where the modal expansion was obtained by separation 
of variables and the given problem was proved to be well-posed by means of the limiting absorption principle. 
For a detailed account of these results as well as some applications, see [13]. For extensions of these results to 
more general classes of domains, see [14] and [15]. 

In [16], the finite element method was applied to a problem of this type occurring in underwater sound 
propagation. For such problems, the formulation of the finite element method is analogous to that described 
above for the exterior problem. The main difference occurs in connection with the radiation boundary condi- 
tion given by a modal expansion on the artificial boundary, F~. 

It is often the case that instead of computing the solution u one is more interested in calculating certain 
functionals of u. For example, in various waveguide problems, it is the scattering coefficients that are of 
interest. See [17] (Chap. 5) for a description of several methods for calculating scattering coefficients for 
problems involving electromagnetic wave propagation in waveguides with discontinuities. To cite another 
example, a method for calculating the dispersion relation in periodic iris-loaded waveguides based on a mode- 
matching procedure is described in [18]. 

2. INTEGRAL EQUATION METHOD 

2.1. Integral Equation Formulations 

The exterior Dirichlet or Neumann problem for the Helmholtz equation may be reforn~ulated as an 
integral equation on the boundary F in various ways. For example, consider ~the exterior Neumann problem 
given by (1.1), (1.2), and (1.4) in R 3. (Note that the methods of this section are applicable to problems in IR 2 
in an analogous fashion.) We express the solution u (x) as a single-layer potential as follows: 

U(X) = ~)r °'~)Fo(x,y;k)dsy, xE~ ,  (2.1) 

where Fo(x,y;k)  is given by (1.5) and IF(V) is to be determined. Employing standard jump relations from 
potential theory (see, e.g., [19]), it may be shown tha t  

IF(X) O Fo (x,y ; k ) 
f)rIF(Y) dsy = g ( x ) ,  x ~ r ,  (2,2) 

2 Onx 

where nx denotes the outward directed unit normal to F at the point x. Note that (2.2) is a Fredholm equation 
of the second kind for IF. If (2.2) is uniquely solvable for a given k, then u may be obtained from (2.1). 

An integral equation analogous to (2.2) may be obtained for the exterior Dirichlet problem by expressing 
u (x) as a double-layer potential, 

£ OFo(x,y;k) , , , 
u (x) = y r  ~ -o-ty)asy. 
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A difficulty associated with this method is that (2.2) (or its analogue for the Dirichlet problem) need not have a 
unique solution for certain values of k, denoted by Ao. The sequence of real numbers Ao consists of those 
values of k for which the following problem has a non-trivial solution in the interior region, B : 

A v = - - k 2 v  inB, v = 0 o n F .  (2.3) 

In order to circumvent this difficulty, other (more complicated) integral equation formulations have been 
developed. For more detailed discussions of these and other questions, see [20] and [21], as well as the refer- 
ences cited there. 

The exterior Dirichlet problem may also be represented by means of a single layer potential, 

u(x) = ~_)rtr(Y)Fo(x,y;k)dsy, xE~Q, (2.4) 

yielding a Fredholm equation of the first kind for ~ ,  

g(x)  ~ ~o-(v)Fo(x,y;k)asy, xEF. (2.5) 

Again, there need not be a unique solution of (2.5) if kEAo. There is no simple analogue of this formulation 
for the exterior Neumann problem. Finally, we remark that in the case of a mixed boundary condition, a sys- 
tem of Fredholm equations results. For a discussion of these methods and appropriate references, see [22]. 

2.2. Numerical Methods 

We first consider an integral equation formulation such as that given by (2.1) and (2.2). A standard 
approach for approximately solving (2.2) is to apply a suitable numerical quadrature formula in order to replace 
the integral by a finite sum. This reduces the integral equation to a finite linear system of equations. The 
appropriate solution is then obtained from (2.1) by again applying numerical quadrature. For further details of 
the method as well as numerical results, see [20], [23], and [24]. 

We next consider an integral equation of the first kind, such as that given by (2.4) and (2.5). The finite- 
element method has been employed to approximately solve the integral equation (2.5). The approximate solu- 
tion was then computed from (2.4) using quadrature. This method has been analyzed and optimal error esti- 
mates proved for the Helmholtz equation in [25]. 

Finally, we point out that when kEAo the system of linear equations approximating the integral equation 
(2.2) or (2.5) will be nearly singular. In fact, the resulting linear system will be ill-conditioned for frequencies 
in a neighborhood of these critical values. If one of the alternative formulations is employed to circumvent this 
difficutly, the resulting integral equation will be more complicated and the singularity may be more difficult to 
treat numerically. These matters are discussed further in [20]. 

2.3 Coupling of Integral Equation and Direct Discretization Methods 

The integral equation method and direct discretization method each possess advantages and disadvantages. 
The integral equation method incorporates the exact radiation condition and results in relatively few linear 
equations to be solved. However, this method requires knowledge of the fundamental solution, so that prob- 
lems with variable coefficients cannot usually be treated using this method. (In general, direct discretization 
methods are more flexible in treating variable coefficients and more general boundary conditions on F.) Furth- 
ermore, there may be numerical problems near interior eigenvalues, as previously mentioned. (Interior eigen- 
values do not cause computational difficulties when direct discretization methods are applied to the exterior 
problems.) In addition, the singularity of the fundamental solution may cause problems, e.g., in computing the 
solution near the boundary F (as pointed out in [23]). 

For direct discretization methods, the resulting system of linear equations is larger. (However, the matrix 
of this system is sparse and banded. The matrix resulting from the integral equation method is full.) Further- 
more, the radiation condition is only approximately incorporated using a direct discretization method. As previ- 
ously pointed out, however, recent developments in the theory of highly absorbing boundary conditions have 
proved useful in treating this difficulty. 

Attempts have been made to combine the advantages of both of these methods by coupling them. In 
[22], an integral equation approach was employed to obtain a non-local, perfectly absorbing boundary condition 
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on F~ for the solution of the exterior Dirichlet problem in R 2. This boundary condition was then incorporated 
in the finite element method to approximately solve the problem. Optimal error estimates were established and 
the method was implemented and tested using piecewise linear finite elements. In [23], a finite difference 
method was combined with the integrai equation method to solve the exterior Dirichlet problem. For refer- 
ences in the engineering literature concerning applications of this type of method, see [26]. 

3. ADDITIONAL COMMENTS 

We remark that the numerical methods discussed above are also applicable to the exterior problem for the 
Laplace equation, subject to a different boundary condition at infinity. There is another method that has proved 
successful in treating this problem. This method consists of mapping the exterior region onto a bounded one 
and then discretizing the resulting problem. For the Helmholtz equation, however, the method fails, since the 
solution has an essential singularity at infinity. See [27] for a more detailed discussion of this method. 

Another numerical problem inherent in treating the Helmholtz equation numerically is the "resolution 
problem". This means that in order to approximate the solution accurately for large k, one must decrease the 
grid size. (This is due to the oscillatory nature of the solution). Hence, there is a practical limitation on the 
size of k in applying numerical techniques. For large values of k, asymptotic methods have proved to be suc- 
cessful. For an extensive discussion of these methods, see [28] and the references cited there. In [24], an 
integral equation formulation is combined with an appropriate choice of coordinate system in order to increase 
the range of frequencies that can be treated numerically. In [29], a direct discretization method based on the 
use of piecewise exponentals is employed to treat the resolution problem. 

Finally, we observe that the system of linear equations resulting from a direct discretization of Helmholtz 
type equations is generally sparse and banded, but indefinite when k is large enough. A direct method for solv- 
ing such equations is described in [30]. In many cases it is advantageous to employ an iterative method. How- 
ever, standard iterative methods are not applicable to indefinite linear systems. A conjugate gradient type 
method applicable to such systems is described in [31]. Another iterative method applicable to systems of this 
type is the multigrid method (see [32] and [33]). 
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ABSTRACT 

What classical and quantum physics have in common is that they deal with material objects, be they elas- 
tic bodies imbedded in a medium, atomic nuclei, or even elementary particles. Each of these target objects, 
when hit by an incident signal (a propagating wave, or a beam of particles), will be excited into eigenvibrations, 
and in its vibrating state will recruit waves or particles which will carry along with them information about the 
vibration properties of the target. We shall discuss here the mechanism by which the eigenvibrations are 
caused, demonstrating that the incident signal produces attenuated surface waves on the object which circumna- 
vigate the latter repeatedly. If their wavelength is such that the surface waves match phases after each circum- 
navigation, then a standing surface wave is set up which represents the eigenvibration, and which causes peaks 
of finite width in the scattering amplitude when plotted as a function of frequency or energy, respectively. 

INTRODUCTION 

The resonance theory which will be employed in the following is patterned after the BREIT-WlGNER 
theory of nuclear scattering [1,2]. Its first application to a classical scattering problem was made by us, follow- 
ing a suggestion of L. FLAX, for the case of acoustic-wave scattering from an infinite elastic cylinder [3]. This 
investigation immediately clarified the very irregular structure of the acoustic backscattering cross section when 
obtained as a function of frequency, either by calculation [4] or by experiment [4]-[6], demonstrating that the 
scattering amplitude consists of a nonresonant "geometrical" background corresponding to scattering from the 
target object as if the latter were impenetrable, plus a series of superimposed, and interfering, resonance terms 
in each normal-mode (or "partial wave") contribution. In this way, the resonances could still be identified in 
the total backscattering cross section [3,7]. 

Following this first application, numerous other examples of classical resonances scattering have been 
treated. These include acoustic-wave scattering from elastic cylindrical [8,9] and spherical shells [10], from gas 
bubbles [11-13] and from fluid and elastic layers [14,15], as well as elastic-wave scattering from cylindrical [16] 
and spherical fluid-filled cavities, [17-23] and from solid spherical inclusions [24]. In some of these studies, we 
proceeded to explain the appearance of the resonances in terms of circumferential waves which are generated in 
the scattering process and repeatedly circumnavigate the target object. At the resonance frequencies, their 
wavelength is such that phase matching, and hence resonant reinforcement, occurs during the circumnaviga- 
tion. 

This picture was also used in order to describe surface waves on a finite fluid cylinder [25] and, finally, a 
problem of nuclear physics has been treated in the same way. The recently discovered higher-multipole giant 
resonances of nuclei [26], together with the well-known giant dipole resonance [27], were shown [28] to be 
interpretable as the manifestation of giant nuclear surface waves which, when the energy of the incident projec- 
tile coincides with a nuclear resonances energy, leads to a resonant reinforcement due to phase matching, in the 
same fashion as in classical scattering problems. This example illustrates the fact that there is a certain unity 
that pervades various disciplines of physics and that permits the utilization of methods developed in one 
subfield to be applied to other subfields, with fruitful results. It is fortunate that the present conference, with 
its interdisciplinary viewpoint, permits the discussion of both classical and nuclear-physics applications of the 
resonance and surface-wave theory in one and the same paper. In closing this section, we remark that reso- 
nance and surface-wave pictures also find a place in heavy-ion scattering [29] and in elementary-particle 
structure problems [30]. 
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1. CLASSICAL RESONANCE THEORY 

Resonance theory in classical scattering will here be illustrated by the example of acoustic-wave scattering 
from an infinite elastic cylinder [3]. If a plane acoustic wave exp i ( l o c - o J t ) ,  with propagation constant k = offc ,  
is incident on a solid elastic cylinder of radius a with its axis parallel to the z-axis, the total pressure field at the 
position (r, ~b) is given by the normal-mode (or partial-wave) expansion: 

p = ~ (2 - 8no)i  n J n ( k r )  + cos n4~, (1) 
n=0 

the second term in brackets representing the scattered wave. The 3x3 determinants b, and Dn are specified by 
the elastic boundary conditions, and they contain cylinder functions with arguments x - -  k a  = o~a/c,  x L =- 
k L a  = o~a/cL and XT - -  k T a  = coa/CT, where CL and Cr are the velocities of compressional and shear waves in 
the cylinder (of density Pc) ,  respectively. We introduce the scattering function 

S ,  = 1 + 2 b , / D , .  (2) 

in terms of which the scattered pressure amplitude becomes 

1 ~ (2 - 6mo) i " (S .  - 1 ) H ( t ) ( k r )  cos he .  (3) Psc = - ~  , ~ o  

In the far field ( k r  >> n). one has 

Psc ~ ( a / 2 r )  1/2ei~rf~ (~b). (4) 

with the. "form function" 

f ~ ( g a )  ~ ~ f , ( d ) ) ,  (5a) 
n=0 

fn(q~) = ( i T r k a ) - l / 2 ( 2  - 8 n o ) ( S  n - 1) cos n~b. (Sb) 

If [f~ (~')1 is evaluated numerically for an evacuated cylindrical aluminum shell in water [4] [for which (1)-(5) 
apply except that b n and D, are now 6×6 determinants; a is the outer radius and b the inner radius of the 
shell], one obtains the graph of Fig. 1, plotted vs. the dimensionless frequency parameter x - -  ka .  Resonances 
are clearly visible, corresponding to the excitation of the eigenfrequencies of the target. 

In principle, the eigenfrequency spectrum, if known, will give us complete information about the 
geometry and composition of the target. It can be determined from the scattered wave, whose amplitude car- 
ries all the resonance information with it; this may be analyzed as follows. 

Expanding the determinants b ,  and D, leads to a representation of the S-function 

S, = S, (°) F ' - I S  z~------~l (6a) 
F n - l -  zi-I , 

where 

s(O) = H.~2)'(x) 2,co 
H Or (x  ) - -  e ( 6 b )  

represents the S-function for scattering from a rigid cylinder. Here, 

zi = x H , ° ) ' ( x ) / H ~ ( n ( x ) ,  i = 1, 2, (7a) 

and 

D(a) 
F.(x)  = p--~-~pc x2 D~ 2---~- ' (7b) 

where Pw is the density of the ambient fluid, and D~ i) are appropriate 2×2 subdeterminants of D n. For a loss- 
less cylinder, F. is real and the resonances of 

Sn -~. s (O ) F f f  1 - Re zi -1 + ilm zi -l 
F, -1 Re zi -1 - i lm zi -1 (8) 

are determined by the real eigenvalue equation 
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F, -1 = Re zi -l, (9) 

whose solutions are the resonance frequencies x~r); labeled by r = 1, 2, 3 . . . . .  Note that in the customary 
approach, the equation F~ -l = zi -I leads to complex eigenfrequencies. In the situation where resonance theory 
applies, however, Im zi -1 is small and the resonances are high and narrow, as in Fig. 1, so that (9) is the 
appropriate approximation. 

A linear expansion of the denominator in S, about x~ r) leads to the partial-wave amplitudes 

fn (~b) = 2i (2 - 8,o) (i,n'ka)-l/2e2t¢" (10) 

2 n . 
× 

- x  ~ - l i t ( , )  + e -'~" sin ~:, cos ,4~, 

where the resonance widths are 

z ~ - l ) / d ( F ,  ~ -  Re zi-~ ). (11) F(~) = - 2 ( I m  

This demonstrates that the scattering amplitude consists of a nonresonant background term (¢~ e-~¢'sin ~,)  upon 
which a series of pole terms representing resonances (Z) are superimposed, and with which they interfere. The 

r 

background can be seen to correspond to the scattering amplitude from a rigid cylinder (Pw/pc ~ 0); in nuclear 
physics it is known as "potential scattering." 

A similar theory can be developed for elastic-wave scattering [17], where, e.g., for an incident compres- 
sional (p) wave, one may have a scattered p wave, or also a scattered shear (s) wave ("mode conversion"). Fig- 
ure 2a shows, for a water-filled spherical cavity of radius a imbedded in an a luminum matrix, the n ~ 0 and 
n = 1 partial-wave amplitude moduli for p ---' p scattering (left side). The right-hand side presents the same 
amplitude for an evacuated cavity, demonstrating that the resonance features on the left are due to the eigenvi- 
brations of the water filling the cavity. If now the evacuated-cavity background is subtracted from each partial- 
wave amplitude before taking the modulus,  then the pure resonances are obtained (left portion of Fig. 2b). 
The right-hand side shows the resonances in the p ~ s (mode conversion) amplitude, demonstrating that the 
resonance frequencies are the same in both cases (since they are due to the vibrations of the same cavity filter), 
but their heights are different, because of different excitation mechanisms. The curves are plotted vs. the 
dimensionless frequency variable x ~ kaa where ka ~ o~/ca, ca being the speed of compressional waves in the 
matrix. 

The total backscattering amplitude moduli summed  over 16 modes are shown in Fig. 3 for p ~ s scatter- 
ing (top) and for p ~ p scattering (bottom). In spite of the interference of all these modes and resonances, 
the latter can be discerned in Fig. 3, and are labeled corresponding to the resonance peaks such as shown in 
Fig. 2b. \ 

The scattering amplitudes may, however, be considered as functions of the two variables x and the mode 
number  n (which is now considered a continuous variable). Figure 4 shows three-dimensional plots of the 
p ---, s (top) and the p ---* p (bottom) scattering amplitudes, after subtraction of the continuous background, 
plotted vs. x (increasing towards the lower right) and n (increasing towards the upper rear). In these plots, the 
resonances manifest themselves as parallel ridges that are inclined to either axis. (The jagged nature of the 
ridges is due to the unitary property of the S-matrix, which causes zeros in addition to the resonance poles). If 

these surfaces are sliced at constant n, the frequency resonances of Fig. 2 are obtained. If the surfaces are 
sliced at constant frequency x, the same ridges give rise to resonances in the mode-number  variable n, 
Mathematically, this can be shown as follows. 

In the denominator of the resonance term in (10), the resonance frequency x~ ~) is a function of the vari- 
able n, in which it may be expanded around the value no(r): 

x2)  = : ,g) + ( ,  - , 2  )) x(r)'. n o , 

no ~r) will be determined from the condition x}o ~) ~ x. This leads to 

[x,(r'-- l'v("]-'= (xg")-'[n- ,o (r) !te(')l-' 
x - - 2 ' ° l  --2 °°1 ' 

(12) 

(13a) 
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which is a resonance denominator in the n variable, with a width 

(" = r ( ,~/x ( , '  
n o n o n o • 

(13b) 

It corresponds to a pole in the complex n plane, located at 

ho(r)~ no(r ) + 1 : ~  (r) (13c) 2 l lno ' 

which in the nuclear literature is known as a "Regge pole." A residue evaluation of amplitudes such as (3) 
shows that two attenuated surface waves 

e x p (  +--'ihoIrl6 ) =--- exp(±  [ino(r)4) - (1/2)1~(~)]) (14) 

are present for each pole (labeled by r), which propagate in opposite directions. Their wavelength is given by 

Xr = 2ra /no(r ) ,  (15a) 

their decay angle by 

,br = 2/1~o ~), (15b) 

and their phase velocity by 

cr = (oa /  no(r). (15c) 

This is valid for a cylindrical target, and (15a) shows that at resonance, where no(~) = n (see (13a)), one has 
h r = 2~ 'a /n ,  so that n wavelengths of the surface wave fit over the circumference, leading to phase matching 
and, hence, to a resonant reinforcement in the course of the repeated circumnavigations. For a spherical target, 
one finds again (15a) and (15c), but with no (r) replaced by no (r) -J- 1/2 in the denominators. Simultaneously, 
however, a phase jump of a quarter-wavelength can be shown to take place [10,12,19,28] at the north and south 
pole of the sphere where the surface waves converge, so that phase matching again takes place after each cir- 
cumnavigation. 

Equation (15c) represents an equation for the dispersion curves of the surface waves, which are plotted in 
Fig. 5 for a water-filled spherical cavity in an aluminum matrix. 

2. NUCLEAR GIANT RESONANCES 

It appears remarkable that exactly the same procedures which in the preceding were shown to be so fruit- 
ful in classical scattering theory, may be used to describe nuclear reactions. What we have in mind is an 
analysis of  the nuclear giant multipole resonances, of which those of electric-dipole type have been known 
experimentally for a long time [27], while the higher multipole resonances, although predicted [31] in 1966 or 
even earlier, have been discovered experimentally only much later [26]. 

These giant resonances, which may be described by the collective model of GOLDHABER and TELLER 
[27] and its generalization to the nuclear four-fluid model [32], can be excited in many different nuclear reac- 
tions, since they are a property of the target only. We shall illustrate their excitation by the inelastic electron- 
scattering process, e.g., for an 160 target: 

e + 160 ~ 160" q.- e', (16) 

and show in Fig. 6 a theoretical [31] (top) and experimental [33] spectrum of the final electrons emerging at a 
fixed scattering angle, which directly reflects the spectrum in the nuclear excitation energy hoJ L. (Henceforth, 
we shall set 77 = 1 .) 

Collective multipole vibrations of a spherical nucleus, of multipolarity L, take the form of a radial oscilla- 
tion (breathing mode or monopole, L = 0), a rigid back-and-forth motion (dipole, L = 1), ellipsoidal elonga- 
tion or oblation (quadrupole, L = 2), pear-shaped deformations (octupole, L = 3), etc. The four-fluid model 
is illustrated by the picture of quadrupole oscillations in Fig. 7, where any two combinations of the proton fluids 
with spin up or down (short arrows), and of the neutron fluids with spin up or down, can oscillate together 
against the other two combinations, leading to the modes i (isospin, I), si (spin-isospin, 1I) and s (spin wave, 
III); in addition, a vibration in unison of all four fluids can take place, leading to the c (compressional, IV) 
mode. Note that in the si and s modes a total spin S = 1 is involved which combines with the matter-vibration 
multipolarity to a total nuclear spin J = L + 1, L or L - 1. In the i and c cases, one has J = L. 
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The transition in which the incident electron lifts the nucleus into an excited state is described [34] by 
Coulomb and transverse matrix elements. The Coulomb matrix element, e.g., depends on the transition charge 
density p (r). A multipole expansion of the latter gives [31] (using a reference radius R): 

o(r) = ~2. ~LMr dr YLM* (r), (17) 
L,M 

where po(r) is the ground-state charge density (assumed to be spherically symmetric), r = Ir[, ? = r - t r ,  and * 
denotes complex conjugation. The collective nuclear motion will now be described by an oscillator Hamiltonian 

H = vi~ [(I/21~L)fl~MflLM + (I/2)I~LtO~a~MaLM], (18) 
L,M 

where eLM is the generalized coordinate and [~LM the conjugate momentum; the mass parameter I*L is found as 
[31] 

2 L + l  Am <r2L-2>0 
I'tL L 4"tr R 2L-4 (19) 

where < ' > 0  is an average with respect to the ground state, A is the nuclear mass number, and m the nucleon 
mass. We decompose 

arM = (1]2ttLtot)l/2[aZM + (--1)reaL-M] (20) 

to obtain a*LM, aLM as the creation and annihilation operators of a giant-resonance phonon. With this develop- 
ment, the Coulomb matrix element becomes 

I I 1/2 ~ (FL/2~')1/2 1 2~LA q f o  rL+l PeJL-t(qr)dr 1 . 
M C =  "2 <r2L-2>mt°L  E -- to L + -~tF L 

--'-- -~/~L (q) (FL/2~)t/2 (21) 
1 , ' 

E - to L + ~ t F L  

where q is the magnitude of the momentum transfer vector, E the continuum excitation energy, and toL and FL 
the resonance energy and width, respectively, which may be taken from experiment (see Fig. 6). The reso- 
nance energy was found as a function of the multipolarity L by SATCHLER [35]: 

to L = C[L  (L + 3)]1/2A -1/3, (22) 

C being a constant independent of L and A. 

From (21) and the analogous transverse matrix elements given by the collective generalized Goldhaber- 
Teller model [31], we may calculate the electroexcitation cross section as a function of excitation energy E for 
given values of the nuclear vibration multipolarity L. This is done [28] in Fig. 8 for an x60 target, for L = 1, 
2, and 3, at an electron scattering angle of 150 ° and incident energies of (a) 60 MeV and (b) 100 MeV. The 
labels L+ in Fig. 8 denote L ~ J + 1, and L0 denotes L = J, for the case of the si mode. (The excitation of 
the s mode is negligible here.) 

As in the classical case, the scattering amplitude may be considered as a surface, to be plotted vs. E and L. 
This surface is sliced at constant E and the result plotted vs. the variable L in Fig. 9, for constant excitation 
energies E = 20, 25, and 30 MeV. The mathematics is as before, with the resulting Coulomb matrix element 

l ~ f ( q )  ~ f ( q )  (PJ2zr)l /2 
= (23a) 

1 . ^  ' 
L - L e -  ~ t F s  

with a resonance value Le chosen so that to j (Le)  = E, and a width 

~ = rd~;(L~). (23b) 

The expression of (23a) has a pole in the upper half of the complex L-plane, located at 

1 ^ 
£E = LE + ~ i r  s. (23c) 



39 

Its location is a function of E, and the locus Of/~E in the complex L-plane as E is varied (known as a Regge tra- 
jectory) is plotted in Fig. 10 for the various modes of the four-fluid model, using (22) and taking empirical 
widths from Fig. 6 (bottom), which are assumed to increase linearly with E. Moving along its trajectory with 
increasing excitation energy, each pole will first pass close to the integer L = 1 and generate the dipole reso- 
nance. Subsequently, it will pass close to L = 2, where the quadrupole resonance is generated, and so forth. 
In this way, the existence of the giant resonances of all multipolarities is seen to be a consequence of the 
motion of a few Regge poles through the complex L-plane. 

As in the classical case, each Regge pole is seen [28] to represent a giant surface wave of wavelength 

?~ = 2 ~ R / ( L E  + 1/2), (24a) 

with decay angle 

Oe = 2/F s, (24b) 

and phase velocity 

c ( E )  = R F / ( L e  + 1/2). (24c) 

The nucleus being spherical, the surface waves converge at the two poles of the sphere where they undergo a 
7r/2-phase jump each time as discussed earlier. Therefore, at a resonance where L = Le, there will be L + 1/2 
wavelengths of the corresponding surface wave fitting over the nuclear circumference, and the resulting phase- 
matching causes the resonance. 

The phase velocities of  the surface waves are given by (24c). In Fig. 11, we plot the corresponding 
dispersion curves for the various Regge poles of  the hydrodynamical model. 

The phase-matching condition may be viewed somewhat differently, namely, as a coincidence condition 
for phase velocities. The vibrational modes depicted, e.g., in Fig. 7, being standing circumferential waves 
around the nuclear circumference, may each be decomposed into a pair of waves propagating in opposite direc- 
tions with phase velocity cL, as shown in Fig. 12 for the quadrupole mode (L = 2). The nuclear reaction gen- 
erates a series of surface waves with speeds c(E) around the nucleus given by (24c), while the modal speeds 
are given by 

CL = R E / ( L  + 1/2). (24d) 

From (24c), it is seen that a resonance occurs at that energy co L at which the speed of one of the surface waves 
launched in the course of the reaction coincides with the phase velocity of the modal wave corresponding to the 
L th  natural multipole vibrational mode of the collective model. Again, this coincidence condition for phase 
velocities may be viewed as an eigenvalue condition for the resonance energy coL. 

SUMMARY 

Similar methods were shown to be applicable for a description of resonance phenomena in macroscopic 
elastic obstacles, excited by incident acoustic or elastic waves, and in atomic nuclei, excited by incident particle 
beams. We first sketched an application of the Breit-Wigner nuclear resonance theory to classical scattering 
processes. The resulting resonance expressions in the frequency domain (with corresponding nuclear resonance 
expressions in the excitation energy domain having been known already) were then transformed into Regge- 
pole expressions, i.e., poles in the complex mode number  (or angular momentum)  domain. Their motion 
along trajectories in this plane was shown to successively produce physical resonances of various multipolarities. 
This method was also applied to nuclear scattering processes. 

The corresponding scattering amplitudes could be interpreted as surface waves circumnavigating the tar- 
get, and dispersion curves for the surface waves have been obtained. Finally, it was demonstrated that a phase 
matching of the surface waves during their repeated circumnavigation generated the resonances by constructive 
interference or resonant reinforcement. 
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(lower portion) of incident electron energy (Ref. 31). Bottom: Experimental 160 giant resonance at 0 = 165% 
E = 54.3 Me V (upper portion), and 81% 45. 6 Me V (lower portion) (from [33]). 
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ABSTRACT 

A number of problems, conjectures, and results in l"adar scattering theory and related fields are reported. 
Some experiments useful for suggesting theoretical problems or confirming theoretical results are also sketched. 

INTRODUCTION 

We report here a number of problems, conjectures, and results from investigations during the epoch 
1943-63 into microwave propagation, radar backscatter, and tangentially related fields. At the start of that 
period, the major advances in theory were being n-iade by quantum theorists; during it, tropospheric scatter pro- 
pagation was discovered and became an identifiable field for symposia, Ph.D. theses, and expensive field meas- 
urements, with limited practical application in long-range communications. For that practical function, the 
communication satellites introduced during the 1960's are vastly superior, so that support for scatter propaga- 
tion research evaporated, leaving problems unsolved and theoretical ideas undeveloped. 

At the close of that epoch, I was trying to assemble a Monte Carlo calculation for long-range tropospheric 
scatter fields, and had intended to sketch this attempt at the present conference, because the mathematical 
problem is essentially that of a quantum particle in a radioactive nucleus subjected to time-varying potentials. 
During the conference I heard, but have not assimilated, several new ideas applicable to the Monte Carlo calcu- 
lation. Rather than writing up this still nebulous material, I shall report on two or three of its subproblems and 
then turn to tangentially related questions and conjectures. The paper is, thus, to be mined for suggestions and 
problems, and not to be treated as a formal scientific paper. 

1. FORWARD SCATTERING 

Before considering scattering irregularities in the atmosphere, one has the problem of solving the reduced 
wave equation system 

q~x~ + ~yy + k2[ 1 + M(y)]q~ = 8(x,y - Yo) ~ S, 

4~(x,O) = O, d;(x,y) upgoing fo ry  > Y0, (1.1) 

where M(y)  is the "modified refractive index," behaving as M(y)  ~ y for large heights y above the smooth 
surface y = 0, x is horizontal distance, and k is the propagation constant, with k 2 equivalent to the quantum 
particle's mass in the quantum analogue. All important rays emanated from the source S travel mainly horizon- 
tally, so the forward-scatter or parabolic approximation is invoked: Let ~b = exp(ikx)tO, substitute the form into 
(1.1), and throw away the qJ~ term as "small," obtaining 

~yy + 2ikqJx + k2Mq~ = S; tk(x,O) = O, tO(x # )  upgoing fo ry  > Y0. (1.2) 

This "parabolic approximation" is 1-1 with a one-dimensional time-dependent Schr6dinger equation, but in a 
sense it is not an approximation at all, because from qJ one can retrieve 4~ via an integral: 

4~(x,y) yab {tO(u,y)u -'/2 exp [ik(x 2 + u2)/2ullau, where {. }~ . . . .  0. (1.3) 

This result has easy generalizations and several close relatives [1]. 

For Monte Carlo purposes, one uses a ray solution of (1.3) valid in the large-k limit: y (x) being the ray 
trajectory and s = s (x) = dy/dx the ray slope, we have dy/dx = s, ds/dx = dM/dy, to be forward-integrated to 
give the trajectory. M ( y ) =  a0Y 2 gives a "parabolic atmosphere" or (when a0 is negative) the quantum- 
mechanical "parabolic potential well". In that case, (1.2) has a closed-form solution [2], the Wigner distribution 
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[3,4] is positive definite, translating into plausible joint height-slope statistics for y,s; and the rays from a point 
source may form foci but do not form caustics. Problems: What is the relation between caustics and the 
Wigner distribution? Is the quadratic M(y)  the most general for which there are no caustics? 

The proposed Monte Carlo calculation [5] leads to a joint height-slope distribution H(y,s) known only 

through a collection of samples (yj si). From these one needs to estimate the integral f ~ [ ' =  H(y,s) H ~ , - s )  
dyds, for which a Wigner-style distribution, appropriate for finite k, may eventually be useful. Short of 
that, the simpler, more abstract problem is the following: Given a probability distribution P(x)  known only 
through N random samplings (xl, x2 . . . .  XN), estimate "optimally" the convolution integral C ( y ) =  

f~ e(x)P(x + y) dx. 

2. INVERSE PROBLEMS 

For time dependence exp(-i to t), the reduced Maxwell's equations in a general stationary medium are 

V x E - icolx (x,y,z)H = O, 

V x H + ito~(x,y,z)E ~ O. (2.1) 

If no quantity varies with y or z, these equations become transmission line equations and one may change vari- 

ables to X ~ X(x )  = fn  x ~ d x ' ,  where X measures "electrical length" down the transmission line. 
With the time depend6~nc~ exp(itot), the equations take the form 

dE itoe~(X)H = O, 
dX 

dH ~_ itoe_uCx) E = 0, (2.2) 
dX 

where Z = e u(x) is the impedance. Now let 

u ( X ) = u o >  0inX>1- 1, u ( X ) = - u o i n X ~ <  1, (2.3) 

and be a prescribed or unknown u(X) in - 1  < X < 1, where it forms an "impedance matching section" 
between two uniform transmission lines of different impedances. So the solutions of (2.2) have the form E = 
exp (itoX) + R (w) exp(-i toX) in X ~< - 1 ,  E = T(to)exp(itoX) in X >/ 1, and something more abstruse in 
- I < X < I .  

Problem: Given R(to) for a positive to, find u(X).  A more realistic versiQn of this inverse-scattering 
problem is: Given noise-contaminated observations O(to) of R (oJ) over some incdmplete set of to-values, use 
O (to), together with estimated noise statistics and the prior information that u (X) varies only in - 1  < X < 1, 
to form some best estimate of u (X). For this, one starts with some answer to: What restrictions on the com- 
plex function R (to) are imposed by the information (2.3)? (Use of prior information is, or should be, of major 
importance in many kinds of mathematical inference: Wiener and Gabor filters are analytically restricted by 
having outputs depending on the previous histories of their inputs. Satisfactory X-ray diffraction analyses incor- 
porate in the inversion mathematics the fact that the electron densities being sought are nonnegative. In 
deconvolving radio telescope data, it is useful to know that radio temperature is a nonnegative function of pos- 
tion in the sky, etc.). 

To me, a more haunting problem is: Given a spectrum B(to) >/ 0 to be used for communications along 
the transmission line (2.2), (2.3), what is the "optimum matching section" u(X) ,  of the prescribed electrical 

length 2, for which o~ B[R 12 do minimum, or (equivalently?) for which fo  ~ B I Tl2dtu is maximum? f0  . is 
Conjecture: the optimum u (X) will be found to be an odd function of X. 

3. R A N D O M  MEDIA 

A random medium M may have "small" fluctuations of both permeability and dielectric constant: 

=/x0(1 + s'(x,y,z)), • = ¢0(1 + s(x,y,z)). (3.1) 

The 'unperturbed medium' M 0 is that for which s,s' vanish everywhere. With 

k0 2 = o2~oEo, p ,q  position vectors, (3.2) 
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and with 

eJg01p - ql 
G = GCp ,  q~ = G ( q , p )  = 

4z'[p q l '  

the scalar Green's function for M0, we write 

E(p) = Eo(p) + : v  s(q)E(q)[k2G + Vq-VqGldq + ioJ/~o : v s ' (q)H(q)×VqG dq, 

H(p) = Ho(p) + Yv s '(q)H(q)[k2G + Vq.VqG]dq -ito¢o Yv s (q)E(q)XVqG de. 

(3.3) 

(3.4) 

Here, E0, H0 satisfy source conditions and Maxwell's equations (2.1) for M0. Equations (3.4) are the integral 
equivalents [6] to (2.1) for the prescription (3.1) in that, if one substitutes the right-hand sides for the left- 
hand sides in the Maxwell's equations for M 0 and uses the delta-function properties of G, Maxwell's equations 
for M result on finally replacing the left-hand sides of (3.4) by the right-hand sides. 

In our opinion, these integral equivalents are to be used in theories of coherence, scattering, and depolari- 
zation of electromagnetic waves in random media. We see no alternative for treating the (academic?) problem 
of propagation in a medium of constant refractive index N having small fluctuations in characteristic impedance 
Z only. Such a medium is closely approximated by setting s '  ------ - s ,  so that the relative fluctuations in Z, Nare 
respectively O(s) and O(s2). 

4. ALLEN'S EXPERIMENT 

Good experiments lead to good theoretical questions. In tribute to the late Philip J. Allen and to the late 
John W. Wright, we discuss theoretical problems arising from their ingenious experiments. Allen patented a 
microwave-frequency translator allowing the continuous-wave (CW) microwave frequency F from a conven- 
tional oscillator to be shifted, or "translated," to a frequency F + 2R, where R is the rotation rate of a 
'matched' dipole, transverse to the axis of a single-mode circular waveguide, about the guide's axis [7]. Allen's 
ingoing single mode is a circularly polarized (CP) transverse-electric mode; the ingoing power is partly reflected 
by the dipole as a linearly polarized (LP) mode with E-vector parallel to the dipole, at least at the dipole. (See 
MOON and SPENCER [8] p. 204, Fig. 9.25 for the sense of "parallel" here). An LP mode with E-vector 
transverse to the dipole passes by to be reflected by a plate or wall situated at distance hg/4 behind the dipole 
(hg = guide wavelength). The LP mode reflected by the plate combines with that reflected by the dipole to 
give a net CP reflected mode in which the sense or rotation is opposite that of the incoming CP mode. Rotat- 
ing the symmetric dipole 180 ° about the guide axis reproduces the initial geometry, bu t  during the rotation the 
phase of the outoging CP has been advanced or retarded by 360 °, according as the rotation is against or with 
that of the incoming CP. In Allen's frequency translator, the dipole is rotated steadily by an adjustable-speed 
motor, and standard microwave hardware separates the frequency-shifted reflected wave from the incident. 

Allen also measured the torque absorbed by the dipole as consequence of the angular momentum fluxes 
of ingoing and outgoing waves [7]. 

In a plane CP light wave of angular frequency to, each photon carries energy ~/to and angular momentum 
or - ~  depending on convention as to handedness (and perhaps convention as to axes). Thus, Alien 

suspected that the angular momentum flux (AF) of his single CW, CP mode at microwave angular frequency to 
would be related to its constant power flux P through AF = P/to. Allen suspended his dipole ingeniously in an 
oil drop, so that the torque of the CP mode would rotate the dipole at some rate R, observable in the frequency 
of a reflected wave. When the reflecting plate of his translator is replaced with a distant matched load, the 
dipole passes and reflects only LP modes, each having zero AF. The AF = AF0 of the incident wave is 
presumably absorbed as torque on the dipole to produce a rotation rate R 0. With the quarter-wave plate rein- 
serted, the incident AF o is converted to flux -AFo in the oppositely rotating reflected mode, so that a doubled 
torque applied Io the dipole is anticipated to produce rotation rate 2R 0. Allen's measured rate was 2.8R0, 
discrepant well beyond any inaccuracies. (Allen left this discrepancy buried in the text of his paper, as he had 
hoped to explain it himself [9].) 

To explain the discrepancy, we sought some mechanism by which torque could also be applied to the 
waveguide, with or without the quarter-wave plate. In either case, the sought torque would in effect attempt to 
rotate a perfectly conducting figure of revolution about its axis. That this must be possible is seen in consider- 
ing AF removed from a plane incident CP wave by a perfectly conducting large sphere, or by a right-angle cone 
pointing into the incident wave. 
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At least one text [10] develops Maxwell's equations from a four-vector potential, combining the E, B 
fields into a bivector and getting AF in a bivector form. Not knowing the four-vector relativistic prescription 
for a circular waveguide, we write down Maxwell's equations again in Table I, starting from conventional poten- 
tials A, 6,  related through the Lorentz gauge condition of line 2. 

TABLE I 
MaxweU's equations 

A, 6 :  

V'A +/xE6, = 0 
E d--At -- V , ,  B d--VxA 

V x E + B t - - 0 ,  V'B------0 

H d B ,  D d E E  
/x 

j d V x H - -  Dr, q d V . D  

V ' J  + qt =~ 0 

V2A -/zeAtt  -- _p.J 

V26 - ;~E6,, ------ - q  

One is asked to believe that this diaphanous array of definitions and identities has some connection with 
the "real" physics of ponderable bodies. In fact, the only introduction of a metric or background reference- 
space is in the constitutive relations, line 5 of Table I [11]. The physical connection is said to come through 
further identities, conservation principles, quadratic in the field quantities. Table II lists all such identities that 
we were able to find or derive. On the left are integrals over general volumes Y having smooth surfaces S with 
outward-pointing unit normal fi; the integrals on the right are surface integrals over S. 

TABLE II 
Electromagnetic Vector Identities 

eE 2 + ffH 2 = 
YEJ÷ f 2 fi.ExH 

f {Eq + J×B} + f {DxB} = E(D'fi) + H(B'fi) - 2(D'E + H'B) 

a fRx{ } -- J; Rx{ } f a x {  }+~7 
f f --= J~ {fi(A.H) - A(fi.H) H(h-A) + 6Dxh} .~ AXJ +e~- 7 j (AXE + B6) 

f ( A ' J - 6 q ) +  f ( E ' D -  H ' B ) +  ~-~ fA.n- J~ ( H x A -  6D)-fi 

[ q ]  -~0 f ( 6 / ~ D - A x B ) ~ [ 6 f i x B + f i ( A ' E ) - E ( f i ' A ) - A ( f i ' E ) ]  f --  , / z J  A + 

In Table II, the first line gives Poynting's theorem; the second, the Lorentz force theorem. Insertion of 
position-vector R under the integral signs of the latter gives the third-line identity between "orbital" torque on 
the left and net "orbital" AF on the right. Line 4 gives the same identity between "spin" torque and "spin" AF. 
Taken together, lines 3 and 4 amount to a six-component bivector conservation-of-angular-momentum state- 
ment. (The foregoing is clearer for CW where the explicit time-derivatives vanish.) The time-integral of line 5 
has the dimension of action, and at least the first integral then becomes a classical version of the action princi- 
ple for a Dirac electron of zero mass. Line 6, if true, has no interpretation known here. 

A plane CW, CP wave falls normally on a half-space filled with finitely conducting material, and is even- 
tually absorbed therein. At first glance, J and A are parallel in the medium, so there should be no AxJ  spin 
torque absorbed in the medium. But A and 3 are vectors rotating about the plane wave's propagation vector, 
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one lagging behind the other when the conductivity is finite [12]; the "spin" AF lost from the CP wave is 
indeed transferred as A x J  torque to the lossy medium. When the CP wave falls on the perfectly conducting 
sphere or cone, one sees no term in the "orbital" form, line 3, by which tangential traction is applied to rotate 
the sphere; the third term on the right of  the "spin" expression, line 4, applies the requisite traction. For a 
more elementary calculation: the plane CP wave falls obliquely on a conductive half-space; the surface integrals 
are now over the plane interface, and should always agree with the volume-integrated "real" A x J  torque 
transfer. This is also the case in the perfectly-conducting limit. 

Using the identities of Table II, we consider angular m o m e n t u m  problems raised by Allen's experimental 
results. With z measuring distance along a general circular wave guide, r measuring distance from its axis, and 
4~ measuring azimuth with respect to some fixed reference direction, the natural coordinates are the polar coor- 
dinate system (r, cb,z). Any propagating CP, CW mode in the guide has an exp(in4~ - loot) dependence. The 
AF of any mode with this dependence through any cross section z = C of the guide is related to the power flux 
P through C through AF = nP/~o, where the AF calculation is given through the "orbital" flux of the surface 
integral, over C, of line 2, Table II. No two propagating modes combine to given any net torque on the guide 
walls. Perhaps no two evanescent modes do, either. Allen's dipole, with his CP propagating mode incident, 
sets up a system of evanescent modes. In the presence of an evanescent plus a propagating mode, the H(fi.A) 
third term of the right side of line 4, table II, will produce, on z, 4~ integration over the guide wails, some net 
z-component of  torque applied to those walls. Allen's quarter-wave reflecting plate, behind the dipole at the 
small distance he~4, reflects evanescent waves to the transverse plane of the dipole, and the interaction of these 
waves with the propagating modes, leading to (unmeasured) torque applied to the walls, accounts qualitatively 
for the 2.8 vs. 2 discrepancy. 

By moving the plate back to (2n + 1)Xg/4, where n is a positive integer, the reflected evanescent modes 
can be made arbitrarily weak at the dipole, whereas the output 's opposite-sense CP is unaltered. Prediction: 
for a sufficiently large n, the reflected evanescent modes become negligible in the region of the dipole, the net 
torque applied to the guide walls becomes negligible by the symmetry of the evanescent waves about the dipole, 
and the anticipated 2R0 rotation-rate will be observed. Problem: Allen's dipole is "matched" in the sense that 
it acts for the propagating guide mode in the manner of  a Faraday screen for a plane CP wave, reflecting a 
parallel, purely LP mode and allowing a transverse, purely LP mode to pass by. Conjecture: there is no passive 
structure insertable into a circular wave-guide that has this Faraday-screen behavior without at the same time 
creating evanescent waves. 

Other results of pondering Allen's experiment: In an R = (R, O, d~) spherical coordinate system consider a 
sphere of radius R 0 having charge q = q0 sin 0 sin ~h pasted on. Let this sphere be set into rotation so that the 
charge seen at time t at fixed azimuth ~b is q = q0 sin 0 sin(4 - cot). The resulting fields interior and exterior 
to the sphere are describable through the spherical wave functions of STRATTON [13] and Morse. At the 
spherical surface R = R0, the fields may be matched to the rotating source, q, to satisfy all source and radiation 
conditions. The difficulty is that this matching holds whether or not the equatorial velocity of the sphere 
exceeds the velocity of light, c. (Our calculation aimed at finding the power oJRx (Eq + JxB)  needed to keep 
the sphere in rotation at constant oJ, and I do not recall looking at the growth of standing wave energy interior 
to the sphere as o~r approached c -- the calculation should be redone.) SCHWINGER [14] calculated the classi- 
cal synchrotron radiation of a point charge moving in circular orbit, finding that the radiated power increases 
indefinitely as orbital velocity v approaches c. Our reading of Schwinger's impressive Fourier transform calcula- 
tions is that there is no such v = c barrier for an extended charge, such as the pasted-on q of the foregoing 
sphere. Arbitrarily high space frequencies in the Fourier transform of the point charge participate in the power 
calculation, whereas there is a high-frequency tailing-off in the Fourier transform of the extended charge. 
Perhaps the classical notion of "extended charge" should be abandoned as leading to unphysical behavior; or 
perhaps general-relativistic methods [15] can be invoked to save the notion. 

By-product: the radial dependence of CW spherical waves of a given P~(O)exp(imd a - ioJt) type is found 
through recur.sions [13, p. 406, eq. 35] starting from exp(ikR)/R for outgoing waves and sin(kR)/R for stand- 
ing waves finite at R = 0. For a general time dependence, the same recursions will work for the (R,t)- 
dependence starting from f ( c t - R ) / R  for outgoing waves and [g(ct + R ) -  g ( c t - R ) ] / R  for standing 
waves, where f a n d  g, if adequately differentiable, are arbitrary, and c is the velocity of light. 

5. WRIGHT'S EXPERIMENT 

Jack Wright used Allen's frequency translator to provide the reference CW for accurate measurements  of 
Doppler-shifted radar echoes from surface waves moving on a liquid [16]. In his initial experiments, a wave 
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generator oscillating at frequency F created waves on the x,y  plane of the liquid's surface having the approxi- 
mate form wave height = h (x,t)  = hos in(Kx  - f~ t ) .  In first approximation, the CW radar illuminated the sur- 
face with a plane wave exp[ikxcos g - i k y s i n  g- ioJ t ] .  Echoes from successive wave crests arrive in phase at the 
radar when the Bragg condition 2cos g. (surface wavelength L) = (radar wavelength h) ,  or 2kcos g = K, is 
satisfied. The geometry is reproduced cyclically at frequency F = fU2~r so that to produce a reference CW for 
homodyne detection, Allen's dipole rotates at rate F/2,  against the input mode 's  rotation if the surface waves 
advance toward the radar. The homodyne detection permited Wright to filter out echoes from stationary 
objects around the laboratory in favor of  the wave echo. Appropriate optics monitored wave shape and height 
h0. For adjustably small values of h0, the echo powers were observed to be proportional to h02. 

Wright 's  LP radar measured wave echoes as function of grazing angle g for horizontal (H) and vertical 
(V) polarizations. (For V, t he  E-vector is in the x,z plane of incidence; for H, it is normal to this plane and 
parallel to wave crests.) Water has microwave dielectric constant ~ - -  80, the Brewster's angle gb being about 
7 °, too near grazing incidence for good measurements .  The jet fuel JP5 (a form of kerosene) has dielectric 
constant 2.1, gb being about 36 °. While Wright 's  absolute echo power measurements  at fixed angle on either V 
or H were somewhat uncertain, the ratio of  power at V to that at H cancels much  of the uncertainty and the 
result is relatively accurate. This V-to-Hpower ratio, plotted against g, shows [16, Fig. 7] what we claim to be a 
definite cusp-like dip at gb. The available small-h0 theory, for which the writer has some responsibility, showed 
no such cusp [16,17]. (Wright claimed his experiment was not good enough to rule out the theory on this 
evidence, and, furthermore, he had no wish to rerun the measurements  with improved equipment because JP5 
was unpleasant and unsafe to work with. By that time his interest lay in questions of wind-wave interaction, a 
field where his experiments and theory made first-rank contributions.) 

The theory is further suspect in its prediction for the grazing limit g ~ 0. If one lets the dielectric con- 
stant ~ increase to infinity, the liquid becomes in effect a perfect conductor, and gb goes to zero. For the dou- 
ble limit ~ ~ 0, then g ~ 0, the theoretical answer differs from that for the reverse order g ---, 0, then ~ ---'0; 
the theory says (incorrectly) that it matters whether one arrives at the double limit with g > gb or g < gb. In 
any event, the finite limit for g > gb violates what is claimed to be a requirement of  the second law of thermo- 
dynamics [18]. 

We point out Wright 's  Brewster's angle cusp and the foregoing grazifig--limit anomalies as items to be 
accounted for satisfactorily in any acceptable theory. 

6. OTHER ROUGH-SURFACE PROBLEMS 

D.D. CROMBIE [19] introduced the Bragg condition to the radar world, and radar to the oceanographers 
as a tool for studying surface wave spectra, after he had analyzed the Doppler-shifted backscatter recorded in 
echo data from an 13.65-MHz vertically polarized radar observing the sea at what was, geometrically, grazing 
angle ----- 0. There is no violation of any second-law precept here as the radar wave propagated not as a free 
plane wave, but as a ground wave, or lateral wave, attached to the ocean sea surface. 

I do not know of any theory for the  effect of  the waves on the lateral wave's propagation. The coherent- 
incident illumination would increase with height on the wave, a phenomenon called "shadowing" when the radar 
is at microwave frequencies. I.W. FULLER [20] measured ocean wave echoes with a short-pulse 3-cm 
wavelength radar at extreme grazing incidences, where shadowing definitely enters. Curiously, horizontal polar- 
ization resolved wave crests considerably more sharply than did vertical, though the net echoed power per wave 
was roughly the same. 

T.B.A. SENIOR [21] derived an effective boundary impedance Z for waves propagating over a rough sur- 
face, though the roughness scales for which his Z appears valid are definitely too small compared with radio 
wavelength to apply to Crombie 's  experiment. Senior's Z applies to coherent scattering by the "average" rough 
surface. HIATT, SENIOR, and WESTON (HSW) [22] made antenna-range measurements  of  backscatter from 
rotating metal spheres (of diameter 10 inches) intended to confirm predictions based on Senior's Z. HSW, 
however, did not use the inteferometric measurements  appropriate for coherent waves, but measured total 
backscattered power as function of azimuth. Naturally enough, for the three wavelengths (10.5, 3.1, and 1.3 
cm) used, there were more and deeper wiggles, or fadings of the echoed power, per 360 ° rotation at the shorter 
wavelengths. For lack of a good theoretical explanation for the reproducible wiggles, one is, as usual, led to 
suggest improvements in the experiment. Let the rough sphere rotate about its polar axis. Then (extrapolating 
from FuUer's observations) there should be differences in the fluctuation characteristics when an incident radar 
LP is polarized parallel to the axis or lies in the equatorial plane, the rates being higher in the latter case as aris- 
ing from points farther around the equator. The fluctuations come from moving echoers, and their locations 
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can be sorted out to Iair extent by their Doppler shifts using Allen's frequency translator and Wright's homo- 
dyne detection -- the general principle was used to locate echoers on the Moon with long-pulse radars. 

The radar echo from a smooth large sphere is composed of a direct convex-mirror reflection from the 
front surface plus contributions from waves, excited by rays tangential to the sphere, creeping 180 ° around the 
back of the sphere, and relaunching tangential rays in the direction of the radar. These creeping waves are the 
curved-surface version of Crombie's ground wave; intuitively, they are affected by the HSW sphere's roughness 
in two conflicting ways: (1) the roughness provides a wave-slowing average structure that enhances the propa- 
gation, while (2) introducing scatterers that transfer power in the creeping wave into rays scattered in random 
directions. In our opinion, way (1) is the winner for small-scale roughness. Continuously changing the shorter 
HSW wavelengths over a 10% range should change the phase of a creeping wave echo, relative to that of the 
front-face echo, over a full 360 °, enabling their relative magnitudes to be established at CW -- though 
interferometric measurement may be needed to isolate these coherent echoes from the random scatter. 

Notable recent advances in theoretical methods for attacking rough surface scattering problems are 
described in the papers of J.A. DeSanto and R.H. Andreo in these proceedings. I trust that the behavior of 
rough surface scattering conjectured here and elsewhere [18] will soon be within reach of quantitative theory, 
and that it has been appropriate to suggest confirming experiments. 
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INTRODUCTION 

Several topics pertaining to rough-surface scattering are discussed. Among them are the region of validity 
of the Rayleigh hypothesis, which treats the field expansion in a concavity in terms of only outgoing waves, and 
a solvable model for plane wave scattering from a thin-comb grating. Both involve periodic, deterministic sur- 
faces. In addition, for an arbitrary deterministic surface, the T-matrix is shown to satisfy a three-dimensional 
Lippmann-Schwinger integral equation for a noncentral and complex "potential." Specializing this to a homo- 
geneous Gaussian distributed random surface yields a one-dimensional integral equation for the ensemble aver- 
age of the T-matrix (Dyson equation) which can be solved. The solution is compared to experimental meas- 
urements and illustrates the importance of multiple scattering in explaining surface scattering phenomena. 

1. THE RAYLEIGH HYPOTHESIS 

For this discussion it is helpful to keep in mind the sinusoidal surface illustrated in Fig. la, although any 
analytic periodic surface will do. The velocity potential (or acoustic pressure field) tO is decomposed into an 
incident plane wave (tOi) plus scattered field (tOsc) as 

tO(x,z)  = tOi(x,z)  + ibsc(x ,z)  , (1) 

where tOsc satisfies the two-dimensional Helmholtz equation 

(0~ + O~ + k2)~,sc(x,z) = 0 , (2) 

with k the wavenumber, and the boundary condition 

tO(x,h (x)) = 0 . (3) 

Define the following set of functions satisfying (2) 

4am(X,Z) = e x p [ i k ( a  m x + / 3 m  z)] , (4) 

with m ffi 0, +1 . . . . .  and a 2 + 132 ffi 1 ( a  m ffi sin Om and /3m ~ COS 0 m where 0 m is the scattered angle). 
Periodicity implies the grating equation, am ~ ao  + n A ,  where A ffi k / L ,  k is the incident wavelength and L 
the surface period. In addition, we assume Re/3m /> 0 or Im /3m ~ 0 SO that, with a (suppressed) time depen- 
dence exp ( - R o t ) ,  the set {~bm} consists either of waves which propagate in the positive z direction or exponen- 
tials which decay in that direction. RAYLEIGH [1] in 1903 assumed the set {4~m} tO be complete for 
z i> h (x). That is, any function, in particular tO,c, can be expanded in the {Cbm} alone everywhere in the wells 
of and on the surface, and the expansion coefficients determined from the boundary value problem. This has 
come to be known as the Rayleigh Hypothesis (RH). 

LIPPMANN [2] and URETSKY [3] assumed that it was also necessary to use a set of downgoing waves in 
the wells, but did not investigate any specific region of validity of the RH. MILLAR [4] stated that: a necessary 
and sufficient condition for the RH to hold is that 

tOsc(x.z) = ~ .  A,4~,(x .z) .  (5) 

is an analytic function of x and z in V 1 + V 2 (see Fig. la). That is, since (5) is a function of a real variable, qJsc 
can be expanded in a uniformly convergent power series. He as well as PETIT and CADILHAC [5] and VAN 
DEN BERG and FOKKEMA [6] showed a specific region of validity of the RH in terms of a bound on the sur- 
face slopes. We now study the convergence of (5) following the latter reference. 
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Assume first that  h and ¢i are both analytic. If  either is not, the RH fails. Note that as n ---' 0% ~ ,  ~ nA 
and /3 ,  ~ inA. We only study the n /> 0 part of (5). Conclusions for the remainder of the sum follow in a 
similar way. Equation (5) must  converge for z = -d .  This follows if 

lim inf [Anl-1/"exp ( - A k d )  > 1 . (6) 

In addition, if s is the arc length on the boundary, and is assumed to be a complex variable, so that x ~ f ( s )  
and z = g(s) on the boundary, then 

~im I~,,,(s)l = Iwl = l e xp{kA[ i f ( s )  - g ( s ) l } [  , (7) 

where ¢ , ( s )  = exp{ ik[a , f ( s )  + ~,g(s)]}.  With the boundary condition (3), (5) becomes 

-q~i(s) = ~ An 6.(s)  . (8) 
n ~ - - ~  

Now, the convergence of the bounding series v(w) = ~, A~w" fails if the mapping w --* v does not exist, i.e., 
n ~ - - ~  

if Ov/Ow = Ov/Os (8w/Os) -I does not exist. The latter occurs if Ow/Os = 0 and from (7) this implies 

d/ds [ i f ( s )  - g(s ) ]  = 0 , (9) 

which is satisfied for some s = Sp. Hence, the radius of convergence of v(w) is W(Sp) so that 

lim inf IA, I-~/"= Iw%)l = ]exp{kA[if(sp) - g(sp)]}l . (10) 
n ~  

Combining (6) and (10) implies convergence (i.e., RH holds) if 

Re[i f (sp)  - g(sp) - d] > 0 . (11) 

If  we return to representing the surface profile as a function of x, z = h (x) = - d g ( x ) ,  then (9) and (11) imply 

h '  = i; and Re[ixp + dg(xp) - d l  > 0 . (12) 

The RH fails then for some d = (Tsuch that 

Re[ixp + d~(xp) - dl = 0 , (13) 

where xp follows from h '  = i. If  J > d_, the RH holds everywhere in the wells and on the surface, and the A~ 
coefficients can be found from (8). I f  d < d, the RH expansion can be continued only up to d, where it has a 
singularity. Note that this is no___! a singularity in the physics of the problem. It simply signifies that the 
mathematical expansion we have chosen is inadequate, and that, physically, standing waves occur in the wells. 

As an example, consider the sinusoidal surface in Fig. la, h (x) ~ - d / 2  [1 + cos(21rx/L)] = - d g ( x ) .  
For this surface, h'  = i in (12) yields the transcendental equation (zrd/L) sinh (2~r.~JL) = 1, where xp = i .~p. 
This is solved for ~p. Then (13) yields d = .~p[~(ffp) - 1] -1. Simple algebra then shows that the RH fails if 
rrd/L > 0.448 where ~ d / L  is the max imum slope of the surface. Note that this criterion is independent of 
wavenumber  and incidence angle. It only depends on the geometric properties of the surface. 

2. T H I N  COMB G R A T I N G  

Here we present a solvable example of scattering from a thin comb grating (see Fig. lb) where the non- 
analyticity of the surface requires different field expansion methods in the surface wells. The velocity potential 
qJ satisfies (2) with the additional conditions: (a) [~7¢1 = O (r -1/2) as an edge of the surface is approached 
radially. This edge condition [7] guarantees that the edges do not serve as additional sources of energy; (b) ~k 
and VtO are continuous at z = 0; (c) (k = 0 on the surface [8]; and (d) ¢~c satisfies the radiation condition. In 
region A (z >/ 0), ~ksc is rigorously expanded in Rayleigh eigenfunctions so that with plane wave incidence 

CA (x,z) = exp[ik(aoX - floZ)] + ~, Ang%(x,z). (14) 

The solution in region B ( - d  ~< z ~< 0) is expanded in standing wave eigenfunctions which include both up- 
and down-going waves in the wells and satisfy condition (c), 

es(x , z )  = ~, B: sin(pjkx)sin[qjk(z + d)] , (15) 
j = l  

with p: ~ j~r/kL and P7 + qj2 = 1. Substituting these expansions into the continuity conditions (b) yields the 
sets of linear equations 



62 

. . . .  [ fln -- qj ± fln + qj -[3--o-o-"~qjqj ± ~--~ : - ~ j  = 0 ,' (16) 

where the equations with the upper sign are proportional to By on the rhs, and the equations with the lower 
sign vanish. 

These equations can be solved using the residue calculus method [9]. Consider closed contour (C) 
integrals Of a meromorphic function f ( w )  of the form 

f c  f ( w )  dw + exp(2ikdqs) f c  f ( w )  dw . (17) 
W -- qj w + q j  

If f ( w )  has the following properties: 

(a') simple poles at B~ (n = 0, + 1 . . . .  ) and -3o ,  

(b') simple zeroes at qs = q1 + % where the ey are determined numerically via the symmetry relation 

f (q i )  = f(-qj)exp(2ikdqj) , and 

(C') f ( w )  vanishes algebraically as I w l ~  co such that the edge condition holds, 

then, as the contour C---,oo (17) are zero. The resulting residue series reproduces (16) provided 
An = RES[f(~,,)] and Bj ~ f (qj)  where RES[f] is the residue of the function f The problem then becomes 
one of constructing f ( w ) ,  in particular its zeroes, using an iterative algorithm which follows from condition 
(b'). This can be done [8] and, in addition, we can prove the energy conservation relation (unitarity) 

E R ,  = E (~./~o)IA.I 2 = 1 , (18) 
n n 

where the summation is over those n values for which ~,  is real (i.e. over upgoing waves which carry energy 
away from the surface), and the R ,  are scattered power coefficients. 

An example with three propagating orders and the Brewster angle effect (where Ro = 0) is illustrated in 
Fig. 2a. It is also possible to design gratings for which Ro = 0 for both TE and TH polarizations [10]. The 
smooth behavior of the R,  are resonance effects. Rayleigh or threshold effects are illustrated in Fig. 2b. This 
is the Cusp-like behavior (observable in all R ,  by (18) but most  prominent in R 0) when, due to a parameter 
change, an evanescent wave propagating along the surface and decaying for z > 0 becomes a propagating order 
for z > 0 (and hence is illustrated in the figure) or vice versa (i.e., a zero of some ft,). Note that (18) is 
satisfied at any abscissa value in both figures. " 

Other examples of solvable problems for scattering from rectangularly corrugated surfaces are available 
[11], as well as applications to atomic beam scattering from crystals [12] radiation losses in an electron ring 
accelerator [13] and surface plasmons [14]. 

3. DETERMINISTIC ROUGH SURFACES 

We next treat the scattering from the deterministic rough surface (in general, nonperiodic) illustrated in 
Fig. lc. It separates two semi-infinite media of different density [15]. The Green ' s  functions Gj in regions V: 
(j = 1,2) satisfy 

(OmO m "}- k 2 ) a j  ( X , X " )  ~ - - 8 ( X  - -  x ' )  , (19) 

for x ~ V s where 0m = (8/Ox, O/Oy, O/Oz), and continuity conditions at the interface 

Gl(xs ,x")  ~ 0 G2(xs,x") , (20) 

(21) 

where 

NI(x~,x") ~ N2(x~,x" ) , 

0 = 02/pl,  xs = (x,y,h(x, y)) = (x~,h(xl)) , 

N:(x~, x ' )  = nm(X±) 0., Gy(xs,x") , . , (22) 

and nm(Xl) = 8 , . 3 -  8mj_h(xj) is a vector in the direction of the surface normal. Equations (20) and (21) 
correspond to the continuity of pressure and normal velocity components,  respectively. 
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Using the free-space Green's function 

G°(x ', x") ffi exp[ikl Ix'  - x " l ] / 4 ~  Ix'  - x" l  (23) 

and Green's theorem in V1 ( assume that the source point is also in V1) yields 

Gl(x' ,x") = G°(x' ,x '') - f G°(x',xs)Nl(Xs,X")dx± - f O'm G°(x',xs)nm(X±) Gl(xs, x")axi , (24) 

a standard integral relation between the field and surface values of G 1 and its normal derivative on the surface. 
Green's theorem in V2, with receiver point x' 6 V1, yields 

0 =  f G°(x',xs)N2(xs, X")dxl + f O'mGO(x',Xs)nm(Xi) G 2 (Xs, X")dx ± , (25) 

a nonlocal impedance-type boundary condition, also called an extended boundary condition [16] or an extinc- 
tion coefficient [17]. Using the continuity conditions to combine (24) and (25), and taking the surface limit 
x' ~ x~ yields 

GS(xj, x") = G°(x~, x") - R f p(x~, Xs) GS(xs, x")dx± , (26) 

where G 1 = (2pip + 1)GS~ R = (,o - 1)/(p + 1) and the function P represents the principal value of the nor- 
mal derivative of G °. 

Introducing the Fourier transform 

GS(x ', x") = (27r) -6 f f  G (k', k") exp[ik' ,  x' - ik".  x" ldk 'dk"  

and those of G O and P in (26), setting the integrand equal to zero (only a sufficient condition for this surface- 
restricted Fourier transform), and defining the singularity-free scattered function F via 

G (k', k") = (2~-) 3 G O (k'){8 (k' - k") + F (k', k") G°(k")} , (27) 

yields a Lippmann-Schwinger integral equation [18] with a noncentral and complex "potential" term for F,  

F(k ' ,k")  ffi V(k' ,k")A ( k ' -  k") + f V(k ' ,k)A ( k ' -  k)G°(k)F(k,k")dk , (28) 

where the "potentiar' term VA contains a (kinematical) vertex function V 

-2, RI,. A he - km - -  k'm V(k, k") [~m~ + am3 • & II kz - k"z (29) 

with P again representing the principal value, and the phase-modulation amplitude spectrum A, 

a (k) ffi f exp[-ik± .x± - ikzh (x±)ldx l , (30) 

e x ~  the dynamical properties of t h e s u r f a c e  interaction. Most importantly, F(k',  k") for k~' = 
-~/k~ - k'~ 2 = - k z  is proportional to the T-matrix for the scattering problem. 

There are several limiting cases of the above formalism. For p = 0% the hard-boundary-value problem 
follows [19]. Corresponding elastic [20] (torsion-free boundary) and electromagnetic [21] (TH polarization) 
problems have been developed. For p = 0, the soft-surface results follow. For p = 1, R = 0 and the free-field 
result follows. For h ffi 0, the integral term in (28) vanishes and the usual fiat-surface results ensue [22]. 
Also, in one dimension, if h (x) is sinusoidal, A is proportional to a Bessel function, and this is just the Ray- 
leigh amplitude for scattering from a sinusoid [23]. 

We now simplify this three-dimensional integral equation by assuming h (x±) to be a random variable. 

4. RANDOM SURFACE 

Now let h(x±) be a Gaussian-distributed random variable and, from (28), find the integral equation 
satisfied by the coherent part of F,  < F > .  The bracket signifies the ensemble average [24]. We briefly outline 
the method. Attach to each term in (28) a Feynman-diagram notation illustrated in Fig. 3. The ensemble 
average of F considered as a Born expansion of the integral equation (see Fig. 3f) involves the calculation of 
ensemble averages of products of A-functions. For a centered Gaussian probability distribution function (PDF) 
of surface heights h (x±), and homogeneous statistics, the correlation function is 

y(x~ - xj,) = < h ( x ~ )  h (x j , )>  , (31) 

which is translationally invariant. For Gaussian statistics, all moments can then be expressed in terms of this 
two-point moment. The ensemble average of products of A's requires a cluster decomposition [25], and is best 
illustrated with examples. We have that 
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< A ( k l ) >  = A l ( k l )  = (2¢r)28(k l t )E(k lz )  , (32) 

where 

E(kz)  = exp[ -1 /2  ~/(0) k~ 2] , (33) 

and ~/(0) = ~r 2, where ~r is the rms height of the surface. For two A functions we have that 

< A  (kl)A (k 2) > = A l (k l )A l (k  2) + A2(k l, k2) , (34) 

A2(kl,k2) = (2~)28 (ku_ + k 2 s ) E ( k l z ) E ( k z z ) R 2 ( k l , k 2 )  , (35) 

and 

R2(kl, k2) = f exp(-/ktL'Pi) '{exp[-~,(pi)klz k2~] - 1} dpi • (36) 

Note that if we expand the bracketed exponential in (36) in powers of the surface height, R2 is proportional to 
the Fourier transform of the correlation function, i.e. to the spectral function of the surface, an important 
experimental measure of surface randomness. The general term A, can also be calculated [19] (also see Fig. 
4a). The result of the ensemble average of F is then resummed (partial summation method) to yield the 
Dyson equation 

< F(k',  k") > = M(k ' ,  k") + f M(k ' ,  k) G°(k)  < F ( k ,  k") > d k  , (37) 

where 

M(k ' , k " )  = ~ Mj(k ' ,k")  , (38) 
j = l  

is called the mass operator [24]. Its first two terms are illustrated in Fig. 4b. All its terms correspond to con- 
nected diagrams, i.e., those which cannot be decomposed into products of simpler diagrams. 

The 8-function factorization in (32) and (35) is a general result so we can write 

Mj(k ' ,k")  = 8(k'± -- k"±) uj (k 'z ,k" z) (39) 

and 

<r(k ' ,k" )>  = 8 ( k ' ~  - k"~) T (k'z,k"z), (40) 

where the k: dependence in uj and T is suppressed. Scaling the resulting T-matrix [26] and adding subscripts 
to T enables us to write the class of one-dimensional singular integral equations 

where 

and 

Tmn (~', ~") ~ V m !~', ~") + f V ,  (~', ~) K (~) Tmn (~, ~") d~ (41) 

K(¢) = lim ( r r i ) - l R ( ¢  2 -  1 -- i ¢ ) - lP (1 /¢ )  . (43) 
¢~0  ~- 

Here, m and n refer to the number  of terms in the Born or kernel parts of (41) respectively and are not 
summed  over (n = 0 means no integral term at all). For example, for plane wave incidence at angle 0i 

u1(¢', ~") = exp[ -1 /2  Z2(¢ ' - ~,,)2] , (44) 

where Z = kl o- cos 0 i is the Rayleigh roughness parameter. This corresponds to T10 in (41), and is just the 
result found by Ament  [27]. Higher order terms can also be computed. 

The coherent specular intensity is then given by 

Ic(k  ±) = R 2 1 T m , ( 1 , - l ) 1 2 8 ( k ± - - k ~  ~) , (45) 

for plane wave incidence. To compare some of the above results with experiment, we first note that experi- 
mental PDF's  are nearly but not exactly Gaussian [28,29]. In Fig. 5, the experimental results (x) from CLAY, 
MEDWIN, and WRIGHT [28] are compared with several theoretical models: (a), IT] 2 = IT10(1, -1)[2  = exp 
(-4Z2),  the Ament  result which is single scatter from a surface distributed with a Gaussian PDF (essentially 
the result is a Fourier transform of a Gaussian); (b), T is  proportional to the Fourier transform of the experi- 
mentally measured PDF of the surface; (c), Tis  proportional to the Fourier transform of the experimental PDF 

V m (~', ~') = ~ uj(~', ~") , (42) 
j = l  



65 

modified using shadowing theory [28], and contains the free parameter 3,"(0) which is proportional to the corre- 
lation function of surface slopes at zero separation. It cannot be measured directly. It must be extrapolated 
from separated measurements. Its value such the T fits the data is about two orders of magnitude different 
from the extrapolated value; (d), I TI 2= I Tl1(1,-1)12, our [19,26] multiple scatter solution for a Gaussian 
PDF which essentially assumes an infinite correlation distance (u 2 = 0) and can thus be related to scattering 
from a Gaussian distribution of flat surfaces, i.e., to a phase screen model [30]. It has no free parameters; (e), 
I TI 2 ~ I~ (2E2)exp(-4Z 2) where Io is the modified Bessel function. This is the single scatter eikonal approxi- 
mation for a Gaussian PDF derived elsewhere [31]. 

Some conclusions are possible. First, single scatter is very sensitive to the form of the PDF. This is seen 
by comparing (a) and (b) (in Fig. 5) which differ by only the Gaussian (theoretical) and slightly non-Gaussian 
(experimental) PDF's. Second, the shadowed result (C) looks good but is really a curve fit. Third, the eikonal 
result (e) consistently predicts more coherent return than is measured, and, fourth, our multiple scattering 
result (d) works well for large roughness whereas the single scatter theories fail for one reason or another. 

5. SUMMARY 

We have, thus, demonstrated the region of validity of the Rayleigh hypothesis for analytic periodic sur- 
faces, and given an example of scattering from a surface which violates it. Numerical results for the latter illus- 
trate some of the many grating effects which occur, and their similarity to quantum scattering results 
corresponding to resonance and threshold effects. The T-matrix for scattering from an arbitrary surface was 
shown to satisfy a Lippmann-Schwinger equation where the kinematical and dynamical properties of the surface 
interaction formed the non-central and complex "potential". The restriction to Gaussian distributed surfaces 
provided a multitude of mathematical techniques as well as interesting conclusions when compared with experi- 
mental results on the sensitivity of single scattering and the necessity of multiple scattering for coherent rough 
surface scattering. 

ACKNOWLEDG MENTS 

This work was supported by the Naval Research Laboratory and the Office of Naval Research. 

FOOTNOTES AND REFERENCES 

[1] J.W.S. Rayleigh: The Theory of Sound (Dover, New York, 1945), Vol. 2, pp. 89-96 
[2] B.A. Lippman: "Note on the theory of gratings," J. Opt. Soc. Am. 43,408 (1953) 
[3] J.L. Uretsky: "The scattering of plane waves from periodic surfaces," Ann. Phys. (N.Y.) 33, 400-427 

(1965) 
[4] R.F. Millar: "On the Rayleigh assumption in scattering by a periodic surface," Proc. Camb. Phil. Soc. 65, 

773-791 (1969); "On the Rayleigh assumption in scattering by a periodic surface II," Proc. Carnb. Phil. 
Soc, 69, 217-225 (1971); "The Rayleigh hypothesis and a related least-squares solution to scattering prob- 
lems for periodic surfaces and other scatterers," Radio Sci. 8,785-796 (1973) 

[5] R. Petit, M. Cadilhac: "Sur la diffraction d 'une onde plane par un r6seau infiniment conducteur," C.R. 
Acad. Sci. Paris 262B, 468-471 (1966) 

[6] P.M. van den Berg, J.T. Fokkema: "The Rayleigh hypothesis in the theory.of reflection by a grating," J. 
Opt. Soc. Am, 69, 27-31 (1979) 

[7] C.J. Bouwkamp: "A note on singularities occurring at sharp edges in electromagnetic diffraction theory," 
Physica 12,467-474 (1946) 

[8] J.A. DeSanto: "Scattering from a periodic corrugated structure: thin comb with soft boundaries," J. Math. 
Phys. 12, 1913-1923 (1971) for the soft (Dirichlet, TE polarization) case in the text. The hard (Neu- 
mann, TH) case is in "Scattering from a periodic corrugated structure II: thin comb with hard boundaries," 
ibid. 13,336-341 (1972) 

[9] R. Mittra, S.W. Lee: Analytical Techniques in the Theory of Guided Waves (Macmillan, New York, 1971) 
[10] E.V. Jull, J.W. Heath, G.R. Ebbeson: "Gratings that diffract all incident energy," J. Opt. Soc. Am. 67, 

557-560 (1977) 
[11] J.A. DeSanto: "Scattering from a periodic corrugated surface: semi-infinite alternately filled plates," J. 

Acoust. Soc. Am. 53, 719-734 (1973) and "Scattering from a periodic corrugated surface: finite-depth 
alternately filled plates," ibid. 56, 1336-1341 (1974) 

[12] N. Garcfa, N. Cabrera: "New method for solving the scattering of waves from a periodic hard surface: 
Solutions and numerical comparisons with the various formalisms," Phys. Rev. B 18,576-589 (1978); R.I. 



66 

Masel, R.P. Merrill, W. H. Miller: "Atomic scattering from a sinusoidal hardwall: Comparison of approxi- 
mate methods with exact quantum results," Lawrence Berkeley Laboratory Technical Report LBL-4969 
(April, 1976); G. Boato, P. Cantini, V. Garibaldi, A.C. Levi, L. Mattera, R. Spadacini, G.E. Tommei: 
"Diffraction and rainbow in atom-surface scattering," J. Phys. C: Solid State Phys. 6 L 394-398 (1973) 

[13] R.D. Hazeltine, M.N. Rosenbluth, A.M. Sessler: "Diffraction radiation by a line charge moving past a 
comb: a model of radiation losses in an electron ring accelerator," J. Math. Phys. 12,502-514 (1971) 

[14] J.J. Cowan, E.T. Arakawa: "Diffraction of surface plasmons in dielectric-metal coatings on concave 
diffraction gratings," Z. Phys. 235, 97-109 (1970) 

[15] K.M. Mitzner: "Acoustic scattering from an Interface between media of greatly different density," J. 
Math. Phys. 7, 2053-2060 (1966) 

[16] P.C. Waterman: "Scattering by periodic surfaces," J. Acoust. Soc. Am. 57,791-802 (1975) 
[17] D.N. Pattanayak, E. Wolf: "Resonance states as solutions of the Schroedinger equation with a nonlocal 

boundary condition," Phys. Rev. D 13, 2287-2290 (1976) 
[18] R.G. Newton: Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966) 
[19] G.G. Zipfel, J.A. DeSanto: "Scattering of a scalar wave from a random rough surface: a diagrammatic 

approach," J. Math. Phys. 13, 1903-1911 (1972) 
[20] J.A. DeSanto: "Scattering from a random rough surface: diagram methods for elastic media," J. Math. 

Phys. 14, 1566-1573 (1973) 
[21] J.A. DeSanto: "Green's function for electromagnetic scattering from a random rough surface," J. Math. 

Phys. 15,283-288 (1974) 
[22] L.M. Brekhovskikh: Waves in Layered Media (Academic, New York, 1960) 
[23] J.A. DeSanto: "Scattering from a sinusoid: derivation of linear equations for the field amplitudes," J. 

Acoust. Soc. Am. 57, 1195-1197 (1975) 
[24] Analogous techniques are used in random-volume scattering theory. See V. Frisch: "Wave propagation in 

random media," in Probabilistic Methods in Applied Mathematics, ed. by A.T. Bharucha-Reid (Academic, 
New York, 1968), Vol. 1 

[25] K. Hualag: Statistical Mechanics (Wiley, New York, 1963) 
[26] J.A. DeSanto, O. Shisha: "Numerical solution of a singular integral equation in random rough surface 

scattering theory," J. Comp. Phys. 15,286-292 (1974) 
[27] W.S. Ament: "Forward- and back-scattering from certain rough surfaces," Trans. IRE AP-4, 369-373 

(1956); P. Beckmann, A. Spizzichino: The Scattering of Electromagnetic Waves from Rough Surfaces (Per- 
gamon, New York, 1963) 

[28] C.S. Clay, H. Medwin, W.M. Wright: "Specularly scattered sound and the probability density function of 
a rough surface," J. Acoust. Soc. Am. 53, 1677-1682 (1973) 

[29] J.G. Zornig: "Physical modeling of underwater acoustics," in Ocean Acoustics, Topics in Current Physics, 
vol. 8, ed. by J.A. DeSanto (Springer, New York, 1979) 

[30] E. Jakeman, P.N. Pusey: "Non-Gaussian fluctuations in electromagnetic radiation scattered by a random 
phase screen I. Theory," J. Phys. A: Math. Gen. 8, 369-381 (1973) 

[31] R.M. Brown, A.R. Miller: "Geometric optics theory for coherent scattering of microwaves from the 
ocean"; Naval Research Laboratory Report 7705 (1974) 



Rn 
(a) 

Z 

67 

h (x) 

b " D "  X 

(b) 

Z • R 1 

R_ n * * ~ O i  ~ ° 

/ /111111 I I I I I I I  

(c) ~ l z Vl 
h(xj_) 

~ X  

P2 vz 

Fig. 1. Plane wave scattering from periodic surfaces (a) (sinusoid) and (b) (thin comb grating), and from an arbitrary 
rough interface (c). Surfaces (a) and (b) have period L, depth d, and are one-dimensional (z = h (x)). The O. are 
the direction angles of  the Bragg orders, Oi the incidence angle, and R .  = (~, 43 o ) I A. 12 where ~ n = cos O. and A .  is 
the scattering amplitude in the O n direction. The surface in (c) is a one-dimensional slice o f  a two-dimensional surface 
(z = h (x± ), x± = (x, y))  and separates two media Vj o f  different density pj  ~ = 1, 2). 



68 

1.0 
(a) 

0.9 \ R 0  O( 0 = 0.707 ~ t~_~ 

0.8 _ = . 

0.7 

0.6 
¢z: = 0.5 

0.4 

0"3 I 02 
oZl 

1 2 3 4 5 6 7 8 9 10 11 12 13 

kd 

1.0 

0.9 

0.8 

0.7 

0.6 
C 

m 0.5 

0.4 

0.3 

0.2 

0.1 

A = 0.63 / 

kd = 2.0 J 

R- 2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ot 0 

Fig. 2. Examples of  plane wave scattering from the surface illustrated in Fig. l (b). Part (a) illustrates three propagat- 
ing orders (~n > O, n = O, - 1, - 2 )  for 45 ° incidence (a o = sin Oi) and a wavelength shorter than the surface period 
(A = h/L).  The zero of  the specular coefficient Ro illustrates the Brewster angle effect. Part (b) illustrates Rayleigh 
or threshoM effects as the incidence angle varies. These effects occur when some/3 n passes through zero so that its 
associated scattering order changes Jrom one that propagates away f rom the surface to a surface waver or vice versa. 
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Fig. 3 -- Diagram notation associated with scattering from an arbitrary surface. Part (a) is the propagator, 
(b) the vertex, (c) the interaction term, (d) the full scattering amplitude, (e) the representation of  the integral 
equation (28), and 09 the representation of  the Born-series expansion of  (28). 
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Fig. 4 -- Statistical diagrams associated with scattering from a Gaussian-distributed random surface. Part (a) 
illustrates the connected multipoint interaction term A n resulting from a cluster decomposition, with k n the 
momentum lines. Part (b) illustrates the two lowest order connected diagrams in the Born expansion and their 
functional correspondence. 
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(theoretical) Gaussian distributed random surface. The (x) are data from CLAY, MEDWIN, and 
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transforms of  the experimental surface probability distribution function with no shadowing (b) and 
shadowing (c) (see the text). Part (d) is our multiple scattering result, and (e) is the eikonal approxi- 
mation. 
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INTRODUCTION 

In their 1957 paper, FRANKLIN and FRIEDMAN [l] introduced a method for obtaining an improved 
asymptotic expansion for Laplace transforms, which as they showed is sometimes also convergent. In their 
introduction, they listed three potential disadvantages of the usual Watson result [2]. First, the resulting series 
is sometimes divergent; second, it is always singular as the transform variable approaches zero; and third, the 
first term alone is often virtually useless for numerical calculations, except for very large values of the 
transform variable. They then introduced an improved asymptotic expansion which is sometimes convergent 
and whose first term is more accurate than the first term in the Watson expansion. More precisely, the 
remainder after one term of the Franklin-Friedman expansion is one order of magnitude smaller than the first 
term in the Watson expansion. However, as a penalty, the first term of the Franklin-Friedman expansion is 
more complicated. The purpose of this paper to motivate the ansatz chosen by Franklin and Friedman, to 
describe some extensions to other integrals, and to examine some examples. These examples are chosen to 
illustrate the improved accuracy and sometimes uniform results this method yields. 

Recall that the first term plus remainder in the Watson expansion of the Laplace integral, 

£ I = f( t) tX-le-Xtdt,  X > O, x---,  co, (1) 

with f sufficiently smooth, is given by 

r (x) 
I = f (0 )  - -77-  + O(x-X-l). (2) 

FRANKLIN and FRIEDMAN [1] introduced without motivation the first term, 

f ( X / x )  r (x) (3) 
X h " 

and showed that the remainder is one order of magnitude smaller, namely, 

z = .ixj--7c- + O(x-~-2) .  (4) 

There are two rather straightforward ways to justify the choice in (3) and, Once this is done, the extension 
of their ideas to other kernels can be obtained. 

The first is to expand f ( t )  as follows: 

f ( t )  = f(ce) + h ( t ) ( t  - a) ,  (5) 

where h (t) = f ( t )  - f ( a )  and a is an undetermined parameter. Note that because f ( t )  is smooth so is h (t). 
t - - o r  

The parameter cz is then chosen so that the remainder 

R = f o  ~ t x - lh ( t ) ( t -c t )e -X 'd t  (6) 

is smaller than the Watson remainder. This is the case if 

f0  ~ (t - = 0 (7) c t ) X - l e - X t d t  

or  

= x/x .  (8) 
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A second way to motivate their Ansatz is to write out the first two terms in the Watson expansion, 

"(0) F(~.) F(R + 1) + O(x_x_2) ' (9) 1 = ]  - - - ~ + f ' ( O )  xX+------------- T -  

which to 0 (x -x-2) can be rewritten 

1 = - 7 -  f(O) + --x f'(O) + O(x -x-2) = f ( h / x )  + O(x-X-2). (10) 

It is important to point out that f ( k / x )  contains terms of all orders in ( l /x )  and that while it cannot be 
guaranteed that the approximation is not better than the remainder would suggest, this is often the case in prac- 
tice. 

With this insight, it is possible to extend their ideas to other kernels and some of these results are con- 
sidered below. 

1. FOURIER INTEGRALS 

The first extension is to integrals of the form 

1 = f ~ f ( t ) ( t  - a)x-l(!3-t)~-leirtdt, k,/x > 0, (11) 

where f ( t )  is sufficiently smooth in some complex neighborhood of both a and/3. Erd61yi has derived an 
asymptotic expansion fo r / ,  and the first term plus reminder is given by [3] 

1 eixa 
I = f(a)F(h)eiX'~/2q3 - a) ~'- - - ~  + fQ3)r(iz)e-#'=/2(/3 - a) x-1 e*'¢x tt + O(x -x-1 + x-t~-l). (12) 

Application of the ideas presented in the last section yield the following expansion, which was given by 
STICKLER [4], 

l ~ f ( a  + ik /x)F (k)eiX~/2(/3-a - iX/x) ~-1 e ~  
x ~ 

+ f(/3 + #x/x)F(lz)e-i~'=/2(B - ot+itx/x) x-I eirO+ O(x -x-2) + O(x-/Z-2). (13) 
x ~ 

Note that the coefficients are more complicated and that the remainder is one order of magnitude smaller 
than the Erd61yi expansion in (12). 

In order to obtain a feeling for the computational advantage this method provides, this result was applied 
to the Poisson integral representation for J~(x) and compared for v = 9 and x /> 9 with both the exact and 
usual expansions. The Poisson integral representation is given by [5] 

(x/2)~ +1 
J~(x) = x/-~F(v + 1/2) f -1  (t + 1)v-U2(1 - t)~-V2e~tdt. (14) 

Application of (13) yields 

J~(x) = . ~ ! A  (x)cos(x - (v + 1/2) 2 + ~)(x)) + O(x-~-U2), (15) 

where 

A (x) = [1 + ((v + 1/2)/2x)2] ~-v2)/2, (16) 

(l,(x)-~ ( I , -  1/2)tan-l((v + 1/2)/2x). (17) 

Note that if A (x) were replaced by unity and qb(x) by zero, (15) would be the "usual" first term large-argument 
approximation to J~(x), but with the remainder estimate replaced by 0(x-3/2). Figure 1 compares the exact, 
the "usual", and the improved expansion of (15) for 9 ~< x ,N< 20. Note that the "usual" expansion is essentially 
"out of phase" with the exact solution in this range while (15) is significantly better. A calculation of the first 
two terms in the usual expansion offers little improvement. Using the expansion in [5], p. 85, Eq. 3, for v ffi 9 
and x = 50, the difference between the "usual" expansion and that of (15) is still large. Equation (15) yields 
./9(50) = -0.02825, and the usual expansion yields 39(50) = -0.097927. 
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Return now to the Erd61yi expansion of (11), given in (12), and note that it is not in general valid as 
/3 --. a .  This is because the derivation of (12) assumed that a and/3 were isolated. If this assumption is not 
made and f ( t )  is expanded in a Lagrange expansion about a and/3, 

f ( t )  = f ( a )  + f ( /3)  - f ( ~ )  (t -- ~)  + R,  (18) 
/3 - a 

then the first term of a uniform expansion is obtained. Note that the remainder R vanishes at both t = a and 
t = /3 .  The first term is given by 

I = e / r ~  - a)x+~,-, r ~ ) r  (x) b ' ( ~ ) o ( x ; x  + ~ , ; ~  - ~))  
r ( x + ~ )  

+ (f(/3) - f (a))dP'(k;h +/z;/x(/3 -- a))]  + O(x-1) ,  (19) 

where ¢ is the confluent hypergeometric function [6] and ¢P' indicates the derivative with respect to the third 
argument. This result is believed to be new. 

For/3 # a ,  and as x --" 0% the uniform expansion in (19) reduces to (12), the Erd61yi result. This uni- 
form expansion has the proper behaviour as/3 "---' a ,  if x ---, co sufficiently rapidly. If the idea introduced by 
Franklin and Friedman is used on this uniform expansion, then the first term of the expansion becomes 

I =  e t ~ ( f l -  ~+ t ' - IF (~ )F(X)  ~ '  r (x+~,)  [ f ( ~ l ) ¢ ( x , x  +~, , /x(~ - a)) 

+ ( f ( / 3 a ) -  f (ot l ) )dP'(h,h  + l ~ , i x ( f l -  a)) ]  + O(x-2) ,  (20) 

where 

( [ 3 -  a ) f ' (o t )  ' f ' ( a )  # O, (21) 

Note that in this expansion the argument of  f ( . )  is not only complex but depends on f ' ( x )  at a and/3. How- 
ever, as before, the remainder is one order of  magnitude smaller than in (19). 

2. OTHER KERNELS 

It is apparent that these ideas can be extended to other transformation, such as the sine and cosine 
transforms, and stationary phase integrals. In addition, it has been applied to the finite Hankel transform 
defined by 

I = f f  (13 - t)~'-lzXf(t)H(ol) (xt)dt, k,t~ > 0, (23) 

and the K0 transform, 

= f o ~ Z X - l f ( t ) K o ( x t ) d t .  (24) 1 

In fact, it appears that this method can be used whenever f ( t )  is sufficiently smooth and the moments  exist. 

3. SOMMERFELD MODEL 

In the remainder of this paper, two examples from acoustics are considered, both of which are classical 
problems. The first is called the Sommerfeld problem and is described as follows. An upper-half space 
(z > 0) is filled with an isospeed, constant density medium [cl,ol] and the lower half-space (z < 0) is filled 
with a second isospeed, constant density medium [c2,02]. The problem is to find the response to a point har- 
monic source. 

Let a point harmonic source be placed in the upper medium (z > 0) and assume that the speed in the 
upper medium is slower than that in the lower medium [cl < c2]. It is well known that in this situation a 
lateral or head wave is present and takes the form 

i 2n e t~ 
Plat = 4,tr k l m  (1 - n 2) x/';L 3/2' 0 > Oc, (25) 
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where n = cl/c2, m = PJPl,  kj = o/cj ,  where oJ is the angular source frequency, r is the radial distance 
between source and receiver, 0 is measured from the z axis with vertex at -z0 ,  and • and L2 are described 
below. The phase O is given by 

• ~ k iLl  + k2L 2 + klL3, (26) 

where the paths L1, L2 and L 3 are shown in Fig. 2, i.e., energy leaves the source z0 at t h e  critical angle 
Oc ~ sin-l(cl/cz), travels along the interface at speed c2, and leaves the interface at the critical angle to reach 
the observation point z. As the range r -- the horizontal distance between the source and receiver --  
decreases, the distance L decreases and as the observation point approaches the critical ray --  shown as a 
dashed line in Fig. 2 -- the lateral wave becomes singular. In addition, as n ---' 1, i.e., as the sound speed in 
the two media become equal, the lateral wave also becomes unbounded. It is these two difficulties that are dis- 
cussed below. 

For the first part of this example, the response is determined for both the source and observation point on 
the interface z = 0. The response in this case is given by two integrals [4]: 

ikl f .  2m2q2 _ n2)-Ho(1) (kff  lx/~- q2)dq 
~ -  vu~ (m 2 -  1)q 2 + (1 

p(r)  

ik2 f ~ 2mq2 H0 C1) (k2r lx/~-q2)dq, (27) 
~ - a 0  im 2 _  1)q2 + m2(1 "n2)/n 2 

where H0 <1) (x) is the Hankel function Of the first kind. 

The asymptotic expansion of the integrals in (27) can be obtained as a special case of the asymptotic 
expansion of 

= yo ~ f(q)cos(zq)H(o D (p41 - -  q2)dq, (28) I 

where f ( q )  is smooth and even in q. 

The expansion is obtained by writing 

f ( q )  = f(ot) + f ( q )  - -  f(o~) (q2 _ or2) 
q2 _ ce2 

and asking for an a which makes the remainder small. Such an a has been found [4]: 

a 2 =  cos2~b _ R (  1 + R ) ( I  _ 3 cos2q~), 

cos ~b = z/R, R = x / ~ ' + p  2, 

and the expansion corresponding to this ¢~ is 

ein A sin 2 +__L1 } 
I = --if(o~)---~ + v{ R2 R3 j. 

(29) 

(30) 

(31) 

(32) 

Note that for R large, a is approximately at the contributing saddle point, if the exponential form of the cosine 
and the asymptotic form of the Hankel function are substituted in (28). Application of (28)-(32) to (27) yields 

-2/m2(1 + i / k v )  e ikff 
p(r)  = 

(kff)(1 - n 2) - i(m 2 -  1)(1 + i / k f f )  4rrr 

2imn2(1 + i/k2r) e ik2r 
+ + O((klr)  -3 + (k2r)-3). (33) 

(k2r)m2(1 - n 2) - in2(m 2 -  1)(1 + i/k2r) 4rrr 

First, it should be noted that it is the second term on the rhs of (33) which corresponds to the lateral or head 
wave and that, for r sufficiently large, it reduces to (25). Second, as either n - -  1 or m - -  1, this representa- 
tion reduces to the exact result. In other words, it is uniform in both m and n, whereas (25) was not. Thus,  
while the coefficients in (33) contain terms in r -3 and higher, they do so in a particularly useful manner which 
illustrates the advantage of this technique. 

When the source and observation point are again in the slower medium, then it is necessary to obtain a 
uniform expansion of integrals with an algebraic singularity near a saddle point, 

I = f Fg(t)e-i~(fl/2+W)dt, r > - 1 ,  (34) 
~ C  
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and an appropriate integration contour C ending in valleys. 

Such an expansion has been given by BLEISTEIN [7], and the application of this expansion to the Som- 
merfeld problem yields a scattered field which is bounded in the neighborhood of the critical ray and reduces 
asymptotically to the expected ray-theoretic result away from the critical ray. Thus,  one of the difficulties in 
(25) is removed. However, the result is not uniform in the index n. This was remedied by STICKLER [4], 
using both the Bleistein result and a modification of the Franklin-Friedman idea. Recall that the Franklin- 
Friedman type modification to the uniform Fourier integral (20) required knowledge of f ' ( x )  at the end-points. 
The modification used by STICKLER [4] does not, but as a penalty does not yield a remainder which is always 
smaller than the original expansion. 

The expansion is, however, uniform in n. The Franklin-Friedman type modification to the Bleistein result 
will now be presented. It has not been applied to the Sommerfeld problem. It is obtained, as expected, by the 
proper combination of the two leading terms of the Bleistein expansion and is given by 

1 = g('01) Ur(u) + g('02) - g('01) Ur'(u) + O(x-2),  (35) 
u 

where 

Ur (u ) = f c tre-i~(t2/2 + w) dt" u = x/~3'e i'r/4, (36) 

and is simply related to the parabolic cylinder function Dr(u), and where 

l r + 1 1 1  + g ( -  3 ' ) , -  g(0) [ "01 /x 3' 3'g (0) , g'(0) ~ 0, (37) 

and 

1 1  I:[ g ' v " ° ' l  1 . . . .  ' 
"02 = -- 3' -- /x g '(--  3') g '(--  3') + -- ~-g t--3')J, g'(--3') ~ 0. (38) 

Note that "ql is near the branch point at t = 0 and that "02 is near the saddle point at t = -3 ' .  Further- 
more, as the saddle point 3, ~ 0, i.e., as the observation point approaches the critical ray, 

r + 1 g"(0) (39) 
"02 = r/1 /x 2g'(O) " 

Hence, the coefficient of  Ur(u) is bounded as 3' ---' 0. 

4. PEKERIS MODEL 

The last section of this paper is concerned with the uniform evaluation of an integral which has near its 
path many first order poles and it has been applied to the Pekeris model. It has, of  course, other applications. 

The Pekeris model [8] is described as follows: an isospeed, constant density layer [cl,pl] occupies the 
space 0 ~< z < L, and the pressure satisfies a pressure-release condition at z = 0, 

p (x,y, 0) = 0. (40) 

The space z > L is a second, isospeed, constant-density [c2,P2] half-space. The pressure and normal com- 
ponent of acoustic velocity are required to be continuous at z = L and the pressure satisfies a radiation condi- 
tion at infinity. For some applications of interest, it is necessary to determine the pressure field in the layer 
0 ~< z < L due to a point harmonic source also in the layer. For this problem, the pressure field can be 
represented by the sum of, at most, a finite number  of  proper or square integrable modes plus the contribution 
of the continuous spectrum. For this problem, the continuous spectrum can be expressed in terms of a branch 
cut integral. This integral is characterized by the fact that near the path of integration there can be many sim- 
ple pole singularities, whose presence introduces significant structure in the branch integral. That is, these 
poles are critical points of  the integrand. 

The pole singularities are of two types. Those of the first type are the finite number  of proper or square 
integrable modes and those of the second the infinite number of improper (non-square integrable) modes. 
These improper modes are sometimes called leaky modes or, in quantum physics, Regge poles [9], [10], [11]. 
As the frequency increases, some of these leaky-wave poles move from the "improper" branch and become 
proper poles on the "proper" branch and in so doing pass through the branch point, i.e., the endpoint of the 
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branch integral. The frequency at which this transition occurs is called the cutoff frequency. It is this 
behaviour which it is desired to describe uniformly. 

Using the techniques described in this paper, STICKLER and AMMICHT [12] have obtained two uniform 
asymptotic expansions of this integral. To obtain these expansions, the integrand is represented by a Mittag- 
Leffler expansion and the resulting integrals are transformed to integrals of the form 

= --yz~f(t)eJXt2dt, (41) 1 

where f ( t )  is even, x real, and z complex. 

For Re z > 0, the main contribution to this integral is an endpoint contribution. For Re z < 0 the main 
contribution is from the saddle point at the origin. The cutoff condition occurs when the singularity is at the 
saddle point. What is needed, then, is an expansion which is uniform in frequency. Two methods will be used 
to obtain expansions of this type and the results compared with a numerical integration procedure [13]. 

An application of the Franklin-Friedman idea yields 

I=  f(a)erfc(x/~z)+ O [ ~ o r f c ( ~ [ ,  , a r ~ z , < ~ = / 4 ,  (42) 
~ J 

where 

1 z 1 (43) 
a2 = ~ + ~ e~2erfc(.f~z) • 

For large z and Re z > 0, a tends to be near the endpoint, while for Re z < 0, a is near the saddle point at 
the origin. 

An alternate uniform expansion is obtained by expanding f ( t )  about the two critical points in a Lagrange 
expansion 

f ( t )  = f(O) + f (z)  - f(O) t2 + R, (44) 
z 2 -  0 

Substitution of (44) into (41) yields 

/ - f (0 )  [1 -~ r '~e r fc ( f f -~z )}  + f (z2)-f(O).~ d [ l ~ e r f c ( x / ~ z ) ] + O [ x - ~ e r f c ( ' , / - ~ z )  ]. (45) 

For the examples considered, the two uniform methods have yielded results identical to four significant 
figures, but the expansion based on the Franklin-Friedman idea is easier to implement in this case. 

In Fig. 3, a plot is shown of the modulus -- converted to db -- of the pressure field as a function of 
ranges with frequency as a parameter. For frequencies less than 54.27 Hz, there are no proper modes and at 
the frequency the first proper mode emerges from the "improper" sheet. This plot shows the transmission loss 
at two frequencies well above and below cutoff, repectively, and at two frequencies just a fractional part of a 
Hertz above and below cutoff, respectively. It is clearly seen that the transition through the cutoff frequency is 
smooth. 
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The source depth is 20 f l  and the observation depth is 40ft. 



HIGH-FREQUENCY SIGNAL PROPAGATION AND SCATTERING 
IN GUIDING CHANNELS 

L. B. Felsen 

Department of Electrical Engineering 
Polytechnic Institute of New York 

Farmingdale, New York 11735 

ABSTRACT 

The earth's environment contains propagation channels wherein waves can be guided because of the pres- 
ence of transverse boundaries or transverse refractive index gradients. By a new approach, high-frequency 
guiding by a single concave surface or by the boundary of an inhomogeneous surface duct has recently been 
analyzed in terms of a judiciously chosen combination of rays and modes. In essence, the modes account for 
the cumulative effect of those rays that have experienced a great many reflections on the boundary. This 
hybrid formulation is appealing in that it requires far fewer rays and far fewer modes than if the field represen- 
tation involves rays only or modes only, as has been customary. By an extension of the theory, it has now 
been shown that the hybrid method can also be applied to channels wherein guiding occurs between multiple 
transverse boundaries. Here, modes near cutoff can represent efficiently all those rays that have made many 
excursions between the channel walls. As an illustration, results are presented for a parallel plane waveguide 
excited by a line source. 

INTRODUCTION 

Terrain probing along the earth's surface or in subsurface layers may involve propagation channels that 
can support electromagnetic or acoustic waves guided along a single surface or between multiple surfaces. In 
the high-frequency range, the propagation phenomena may b e  described either in terms of guided modes and 
continuous spectra (when required), or in terms of multiply reflected ray-optical fields. The calculations may 
require the summation over many modes or many rays, and they become even more complicated when profile 
perturbations introduce scattering centers or nonuniformities along the propagation path. 

In a recently developed theory, a judiciously chosen mixture of modal and ray fields has been shown to 
provide an effective method for calculating signal strengths and providing new insights into the physical 
mechanism of propagation and scattering. The ray-mode mixture involves far fewer rays and modes than when 
only rays or only modes are employed to characterize the field. The theory was first constructed for source and 
observation points on concave terrain contours where the relevant modal fields are whispering-gallery modes 
guided along a single boundary described by a surface impedance [1]. Subsequent extensions have dealt with 
ducts having an inhomogeneous refractive index profile that causes field trapping near a planar surface [2]. In 
both cases, the ray fields that undergo many reflections between the source point Q and the observation point P 
cannot be calculated by geometrical optics because the local plane wave assumption underlying the geometric 
optical model cannot be satisfied for such fields. In qualitative terms, those rays lying within the duct of the 
most closely bound whispering gallery mode (Fig. 1) must be excluded from a ray-optical calculation and 
accounted for in some other way. Various schemes involving canonical integrals (the analogues of Fock 
integrals for shadow boundary effects on convex surfaces), guided modes and the above-noted appropriately 
chosen mixture of rays and modes have been explored in this context [1,2]. Among these formulations, the 
hybrid ray-mode model is simplest and physically most appealing. For details of the analysis and for numerical 
comparisons of the accuracy of the various alternative formulations, which confirm the validity of the hybrid 
model, see [1,2]. 

When guiding is produced by two boundaries, there exist rays that experience many reflections between 
these boundaries as they progress from Q to P. While the ray-optical description of the field along these rays is 
legitimate, their summation poses numerical problems. Here, it is found that the cumulative effect of such rays 
can be accounted for in terms of an appropriately chosen numbers of waveguide modes near cutoff. 
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1. HYBRID FORMULATION FOR PARALLEL PLANE WAVEGUIDES 

For illustration, consider a homogeneously filled parallel plane waveguide with perfectly conducting boun- 
daries, excited by a magnetic line source on one of the boundaries. The exact Green's function can here be 
expressed as a modal sum involving the propagating and evanescent waveguide modes. The Green's function 
can also be expressed as a Fourier transform with respect to the axial coordinate z. In the resulting integral 
representation, there exists a resonant denominator whose zeros provide pole singularities that correspond to 
the waveguide modes. If the integration path is deformed around those singularities and the residue theorem is 
invoked, one obtains the above-mentioned modal sum, each mode being identified by the characteristic angle 
0,, (Fig. 2). On the other hand, if the resonant denominator is expanded in a geometric series, thereby remov- 
ing the poles, one obtains a series of integrals. When these are evaluated asymptotically by the saddle point 
method, each furnishes a contribution that can be identified exactly with a geometric-optical ray field character- 
ized by the ray angle O n (Fig. 2). 

If one does not wish to include all of the multiply reflected rays in the formulation, one may expand the 
resonant denominator into a partial sum up to 0N plus a remainder term. By contour deformation in the result- 
ing remainder integral such that the contour coincides with the steepest descent path corresponding to the last 
ray with OAr , and by subsequent asymptotic (saddle point) evaluation, one may show that the remainder integral 
is well approximated ( -1 /2)  of the contribution from the last ray provided that 0N @ 0M or 0M-l, where OM 
and OM-1 are the characteristic angles of those waveguide modes that lie on either side of 0N (i.e., OM > ON > 
OM-1) (see Fig. 1). These steps are directly analogous to those performed in dealing with the surface-guided 
fields [1,2]. Thus, the exact solution yields for the field G on the lower boundary of Fig. 2, (see [3]) 

G = ~ (propagating waveguide modes) + ~'~ (evanescent waveguide modes). (1) 
m=O m=M+l 

Unless the lowest evanescent mode with r n = M + l  is very near the propagating regime, the evanescent mode 
sum can be neglected for large enough ranges between P and Q in Fig. 2. The hybrid ray-mode formulation 
yields 

G ~ ~ (propagating waveguide modes) + ~ (evanescent waveguide modes) 
m = M  m=M+l 

N 1 
+ ~ (ray fields) - ~- (Nth ray field). (2) 

n=0 

A negligible remainder term, which is also found to appear [1,2] has been omitted in (2). The criterion for 
choosing M and N is schematized in Fig. 2: if 0zv is the departure angle of the last included ray (the one with 
the highest number of reflections), then the modes needed are those with OM > 0^,. It is evident that if N is 
kept constant but the range z between the source point and observation point is increased, the departure angle 
0^, decreases and will eventually approach the characteristic angle OM_ 1 of the first excluded mode. When z is 
such that 0re < OM-l, this latter mode must be added to the mode sum. Analogous considerations prevail 
when z decre___ases, thereby leading eventually to the removal of the mode with 0 M. Alternatively, if the number 
of modes (M - M) is kept constant, the number of included rays N must be adjusted with varying range z such 
that all possible rays with 0N < OM are included. When 0~v ~ OM or 0~_1, the saddle point for the last ray in 
the contour integral representation approaches the pole for the nearest waveguide mode. In this transition 
region, the simple ray-mode model fails and must be patched up by a transition function (a Fresnel integral; see 
[4]) that accounts for the proximity of a pole and a saddle point. Note that at least one of the propagating 
modes (the one closest to cutoff) must be included, whence O N < 0 m. The conclusions summarized above 
may also be confirmed by applying partial Poisson summation to the ray series in (1), thereby converting it into 
the hybrid formulation in (2) (see [3]). The procedure is directly analogous to that reported in [2]. 

Typical numerical results [3] obtained from the exact and hybrid formulations are depicted in Fig. 3, 
where I G I is plotted over a normalized range kz from _250-290, k being the wavenumber in the medium. The 
normalized waveguide height is ka = 50 and admits M = 16 propagating modes. The exact field is calculated 
from (1); for this case, the evanescent modes can be omitted, since they contribute negligibly over the specified 
range of observation points. Also plotted in Fig. 3 is the hybrid ray-mode solution obtained from (2) when 
N=2  as in Fig. 2 (i.e., the direct ray and the rays with one and two refle'ctions at the upper boundary have been 
retained). From the criterion 0 m >~ 0 A, = 02, it is found that M = 13 for 250 < kz < 261, whereas M = 12 
for 261 < kz < 290, in view of the fact that the characteristic mode angle 013 for m=13 coincides with the ray 
departure angle 02 when kz = 261. The hybrid ray-mode formulation in (2) is discontinuous at 0 M = ON, but 
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the jump is not very large and can be eliminated approximately by drawing a smooth curve through the average 
value at OM = 0N. By a more rigorous procedure, one may employ the Fresnel integral transition function that 
provides continuous field values through the transition region surrounding kz = 261. Both the approximate 
and rigorous methods are seen to furnish excellent agreement between the exact and hybrid solutions. Note 
that whereas the exact solution requires 16 propagating modes,  the hybrid solution requires 3 rays and three or 
four modes, respectively, for 250 < kz < 261 and 261 < kz < 290. When N = 3  so that rays with three 
reflections at the upper boundary are included as well, one finds 03 = 014 at kz ~ 282. Consequently, two pro- 
pagating modes (with m = 14,15) are required for 250 < kz < 282 while three modes (with m = 13-15) are 
required for 282 < kz < 290. The numerical accuracy is comparable to that depicted in Fig. 3. Similar results 
are obtained for other values of N and other range intervals [3]. When the first non-propagating mode is very 
close to cutoff, its contribution must  be included in (1) and (2). Numerical comparisons again confirm the 
validity of the hybrid calculation in that event [3]. 

2. A NEW CLASS OF DIFFRACTION PROBLEMS 

The hybrid ray-mode formulation of propagation leads to a new class of diffraction problems when a 
scatterer is located inside the duct. In previous studies [5], a ray-optical method was devised to account for the 
presence of obstacles or strong scattering centers within the guiding structure. The field in each of the incident 
modes is represented by its congruence of rays, and the scattering of these rays by the obstacle is calculated 
from the geometrical theory of diffraction. The diffracted rays, which experience multiple reflection at the 
waveguide boundaries or continuous refraction within the duct, are then converted into guided modes to estab- 
lish the scattering matrix elements that describe the effect of  the obstacle on reflection and transmission of the 
incident modes as well as coupling to other modes. It is to be emphasized that all of the rays are converted into 
the propagating guided modes by this scheme. 

In the hybrid formulation, each of the retained incident modes and each of the incident ray species will 
give rise to a ray-optical scattering process as described above. The multiply reflected ray fields excited by the 
scattering center can be decomposed into another hybrid mixture that may be preferable for calculation at vari- 
ous ranges of the observation point with respect to the scatterer. The hybrid selection could be made so as to 
minimize the complexity of the scattering calculation. The flexibility introduced thereby is illustrated in the 
example of Fig. 4. The principal difference between the mode theory of diffraction and the hybrid theory is 
the dependence of the ray-mode mixture on range. For the incident field, the relevant range is from the source 
to the obstacle, whereas, for the scattered field, it is from the obstacle to the observer. 

3. CONCLUSIONS 

The hybrid ray-mode formulation affords a new approach to source-excited high-frequency propagation in 
guiding regions formed by transverse refractive index inhomogeneities and (or) bounding surfaces. Conven- 
tional methods have expressed the field either in terms of rays or in terms of (discrete and continuous) modes. 
The hybrid ray-mode mixture improves upon these methods since it requires far fewer rays and modes than 
when only modes or only rays are considered. This facilitates numerical treatment of the problem. It also 
grants new physical insights since the formulation implies that propagation processes characterized by rays with 
many reflections can be treated collectively in terms of a few modes, while processes characterized by many 
modes can be expressed succinctly in terms of a few rays. In effect, the hybrid formulation quantifies the 
truncation error of  a mode series in terms of rays, or equivalently, the truncation error of a ray series in ~erms 
of modes. Moreover, since the number  of modes in a modal expansion can now be suitably restricted, the 
eigenvalue problem in a complicated ducting environment  may often be reduced to a simpler form for the 
retained cluster of modes. This feature economizes on computer time and required computer capacity. The 
hybrid formulation also appears to be well suited to treatment of lateral inhomogeneities along the duct pro- 
vided that these occur gradually over a length interval equal to the local wavelength of the signal spectrum. 
Finally, the ray-mode field representation provides a new approach to scattering from strong inhomogeneities 
since physical insights derived from scattering of either a modal field or a ray field can be exploited to advan- 
tage. 
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Fig. 4. Hybrid ray-mode formulation of scattering by a vertical strip obstacle M a surface duct. The modes 
retained (M = 3) are those whose caustics lie below the edge since the reflection of these modes is as from an 
infinite plane and therefore evaluated trivially. The modes whose field strength are appreciable at the edge are 
accounted for by the two incident rays. The scattered fields are evaluated as from an equivalent non-isotropic 
line source located at the edge 0. Only a single ray proceeds from there to the observation point Q, and the 
excited modal fields (m = 1,2,3) are negligible. 
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INTRODUCTION 

Scattering of electromagnetic radiation by moving bodies occurs in many situations of engineering impor- 
tance. The article of VAN BLADEL [1] treats rotating bodies and has a lengthy list of references of other arti- 
cles in the physics and engineering literature. The customary method of approximating the field scattered by a 
moving body is to calculate the stationary field scattered by the body for each time t, as if the body were 
"frozen" at that time. This procedure yields a time dependent sequence of stationary fields usually referred to 
as a quasi stationary field. In the engineering literature, it is assumed that the quasi stationary field provides a 
good approximation to the exact scattered field. Recently the mathematical theory of scalar scattering of LAX 
and PHILLIPS [2] has been extended to the case of moving bodies [1,3]. Within this framework, it is now 
possible to consider the validity of the quasi stationary approximation. 

In this paper, we shall discuss the representative case of a rotating, convex body in the presence of a 
time-harmonic plane wave. Let 1~ 3 denote three-dimensional Euclidean space with coordinates x = (x l ,x2 ,x  3) 
and r = Ix[ = ~/x 2 + x~ + x32 . Let O ( t )  denote the set of points occupied by a rotating convex body O o at 
time t. We assume that O (0) = O o and that the body is rotating with constant angular velocity li about the 
x3-axis. Furthermore, Oo contains the origin and OoC{X:r ~< O} for some constant p > 0. To obtain a well- 
posed problem, we shall assume that l ip  < 1. Let E ( t )  denote the exterior region at time t, 

= [,.J E ( t ) x { t } ;  E = OE 
- ~ < t < ~  

and E = 0E the space-time boundary of the obstacle. 

Now let a time-harmonic plane wave e i~(t-x~) be incident on the body, where o- is the frequency and "0 is 
a unit vector. The speed of propagation c is taken to be unity. We consider the problem of approximating the 
scattered field given by the solution of 

tIJtt - -  A t o  = 0 in ~" 9 

to ~ - - e  i ° ' ( t - x ' r t )  o n  ]~  . (1) 

Before we discuss the quasi stationary approximation to tO, we must review some properties of the exact solu- 
tion to (1). 

1. THE EXACT SOLUTION 

Because of the moving boundary, it is not possible to separate variables in the usual manner to solve (1). 
In [4], a notion of outgoing was defined for solutions of (1) which generalizes the Sommerfeld radiation condi- 
tions. It was shown that outgoing solutions of (1) exist and are unique, provided the local energy of finite- 
energy solutions of the Cauchy problem decays exponentially. For a rotating convex body, this can be proved 
for f~ sufficiently small (see [3]). In this case, we have the representation 

to (x , t )  = f _ '  w ( x , t , s ) e i ~ S d s  - X ( x ) e ' ~ ° - x ~  ) , (2) 
where w is the finite energy solution of 

Wtt - -  A W  ~ 0 in L" 

w = 0 o n Z  , 

w(x,s , s )  = o, wt(x,s,s) = q(x ,  cr) in E ( s )  . 
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X ( x )  is a smooth function such that X = 1 for Ix[ ~< p and X = 0 for Ix] /> p+l .  Here, q(x , ( r )  = e - j ' x 'n  
x(2i(ra9 • VX --Ax). The integral in (2) converges in the local-energy norm for each t. Since the motion of 
the body is periodic, we may deduce from (2) that tk has the form 

$(x , t )  = ei*tp(x , t )  , 

where for each x, t ---, p ( x , t )  has period T = 21r/Fl. A f a r f i e M  for the solution ~b can be defined as follows. 
Let 0 be a unit vector in ]R 3. The points (x,t)  where x = (t - z)0 constitute a space time ray of unit speed 
which leaves the origin in l~ 3 at time t = r. We define the far field of ~b to be 

xt,(z,0) = lim tt~( (t  - "r)O,t) . 

It can be shown (see [6]) that ~( 'r ,  O) = ei~'P(O, "r) where r ---. P(O, "r) is a functiori of period Ttaking values 
in L2($2), $2 = {0 E R~. 3 : 101 = 1}.  Pdepends only on the values of ~k near the obstacle. 

2. THE QUASI-STATIONARY APPROXIMATION 

The quasi-stationary approximation for the scattered field given by the solution of (1) is the time depen- 
dent sequence of stationary fields given by the function 

~b(x,t) = e i~ t f ( x , t ) ,  

where for each t, x ---, f ( x , t )  is the outgoing solution of 

Af + (r2f = 0 in E ( t )  

f = e -i'~x'" on OE(t)  , the boundary of E ( t )  (3) 

As in Sec. 1, we may write f as an integral of solutions of the Cauchy problem, this time in E ( t ) .  We can 
compare the two integral representations and exploit the finite speed of propagation to prove 

Theorem 1: There exists fl o > 0, depending on the shape of the body, such that in the local-energy norm 

IN,(t)-  6( t ) l lR ~< c,~2(~p) ~ 

1 ~1 (ut2 + Ivul2)ax" The inequality holds for a l l f l  < 1 when- where for  a function u (x , t ) ,  I lu ( t ) l l~  = 7 xl ~< g 

ever II < II o and [o'l > 0. The constant C depends on R, the shape o f  the body, or, p, and [3. The estimate is uni. 
form in t. (The proof is given in [6]). 

Next, we wish to define a far field for 4). The limit along space-time rays x = (t - ~-)0 as t ---. ,,o does 
not exist for the quasi-stationary approximation. Instead, we define 

dp(.r,O) = e i ~  a(O,'r) , 

where a (0, z) is the usual far field for the solution f o f  the stationary problem (3): 

a(0, r) = lim re i~r f (rO,z)  . 

The local energy estimate of Theorem 1 then leads to a comparison of the  far fields. 

Theorem 2: For fl < I~o, we have 

I I't '(~, .) - ~(~,  )llt2<s2) ~ M~2(Pfl)~ 

for  all ~ < 1 where M is a constant which depends on p, f l ,  cr and the shape o f  the body. The estimate is uniform in 
• , and in the incident direction ~9. 
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VARIATIONAL METHODS FOR WAVE SCATTERING 
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ABSTRACT 

The scattering of waves by random surfaces and media has long been of considerable interest from both 
theoretical and experimental viewpoints. This paper briefly reviews the work of our group toward developing 
variational principles which are applicable to the scattering of scalar and vector waves from stochastic systems. 
These principles have the general form 4rr < T>  = < NI>  < N 2 > / <  D > for arbitrary scattering statistics. In 
this expression, T is the far-field scattering amplitude, Aq is the usual noninvariant integral representation of T, 
and the ratio of integrals N2/D is the variational correction factor. Application to a simple model of a random 
rough surface has shown this stochastic variational approach to account in large measure for multiple scattering. 
The potential tractability of stochastic variational principles should allow broader application of variational tech- 
niques to random scattering problems. 

INTRODUCTION 

The theoretical description of wave scattering by stochastic systems is of interest in many diverse areas 
[1]. In order to investigate effects such as interference and multiple scattering, researchers at the Johns Hop- 
kins University Applied Physics Laboratory have developed and tested variational methods for wave scattering 
from random systems. These stochastic variational principles allow tractable variational evaluation of the statis- 
tics of the scattering amplitude and of the differential scattering cross section. The following examples will 
illustrate their formulation. 

1. SCALAR STOCHASTIC VARIATIONAL PRINCIPLE FOR SCATTERING 
FROM RANDOM ROUGH SURFACES 

Consider the well-known variational formulation of the scattering of a plane wave toJnc (x') = A e ' ~  ~ from 
a closed surface So on which the wavefunction tO satisfies Neumann boundary conditions, 0tk(~')/0n I~s0 = 0. 

The scattering amplitude T = iAq/4"n-A can be written in the familiar stationary form [2] 

4rr T(ks ,k  i) = N1Nff D (1) 

by expressing the amplitude A of the incident plane wave in terms of the "adjoint" wave function ~, where 

N~ = ~ dS~' ~',to(~')e -'k~~' N2= - ~ d S  ~ - - ' - "  '~" ~ • , • kito(x)e , 

and 

D = ~) dS~ dS t o (x) Go(x,x ) qJ(x ), 

with Go (Z~') the usual free-space Helmholtz Green function. As is well-known [2-4], the importance of (1) 
for calculations is that it is insensitive to errors made in approximating to and ~ on So. 

In the application of scattering theory to random systems, the measureable quantity of interest is generally 
a statistical moment,  e.g., the ensemble average < T> .  The direct application of (1) to rough surfaces requires 
the prohibitive average 
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However, HART and FARRELL [3] have used the nonstochastic nature of the amplitude A = iD/N2 of the 
incident plane wave to derive the exact result 

4,n-< T >  = < N I / ( - / A ) >  = < N I > / ( - i A ) =  < N I > < N 2 > / < D > .  (3) 

Furthermore, by virtue of the nonstochastic nature of the amplitude A = iD/N1 of the plane wave for the 
adjoint problem, they were able to demonstrate that variations of (3) cancel to first order, thereby establishing 
(3) as a valid stochastic variational expression for scattering from rough surfaces. Similar results can be 
obtained for the higher statistical moments  of both the scattering amplitude and of the differential cross section 
d(r/dfl---- ]TI 2. See [5]. 

2. T E S T  C A S E  - -  A R A N D O M  SURFACE MODEL 

In order to gain some insights into the new stochastic variational approach, GRAY, HART, and FAR- 
RELL [6] considered electromagnetic-wave scattering from a model random rough surface [7] consisting of a 
large number  N of nonoverlapping parallel hemicylindrical bosses of equal radii a, randomly distributed over a 
length L of an infinite conducting plane. They compared the first-order perturbation approximation of the 
differential cross section for scattering of the normally incident TM mode to the variational improvement of 
this appproximation using the same plane wave trial function. In the Rayleigh limit and to terms linear in the 
area fraction ~, = 2aN/L occupied by the hemicylinders, they found the average differential scattering cross sec- 
tion to have the form 

< I TI2> = C(1 - va), 

where C is a function of the incident and scattering angles, and where the coefficient c~ has the value a = 2 for 
the perturbational approximation and a = 4.08 for the variational improvement. 

In order to investigate this difference, KRILL and FARRELL [8] have computed the exact value, in the 
Rayleigh limit and to first order in u, for the scattering from a special case of this model with only two hemi- 
cylinders present, and have compared it with the perturbation and variational results. They found for this sur- 
face, with N = 2, the same expression for the differential scattering cross section, with now the value a = 1.89 
for the exact solution, a = 1 for the perturbational approximation, and a = 2.04 for the variational improve- 
ment. [Note that the large N limit does not apply for this (N = 2) surface.] An examination of the exact solu- 
tion revealed that the closed agreement between the variational and the exact results is due to the fact that the 
variational approximation accounts, in large measure, for multiple scattering effects, whereas the perturbational 
approximation which it improves does not. 

3. VECTOR-WAVE SCATTERING 

In order to account explicitly for the vector nature of the electromagnetic field, e.g., to investigate polari- 
zation effects, KRILL and ANDREO [5] have developed vector stochastic variational principles for the scatter- 

ing of a plane electromagnetic wave ~nc = A~ie rg~" ~ from an inhomogeneous,  anisotropic, conducting dielectric. 
The scattering amplitude for radiation polarized along a specfied direction ~s is 

x f - 1 
= l~se U(~') " ff~(-~') =- ~ NI, 

where the dyadic operator U depends of the tensor conductivity and permitivity. ' As for the scalarcase, this 
scattering amplitude can be written in an invariant form by expressing A in terms of the adjoint field E, and one 
finds 4rr T = N1N2/D , with 

^ ~ i ' x  
N2= f d3x~(~) • ~ (~)  " [Tki " eie ~,  

and 

Because the amplitude A is nonstochastic, the exact stochastic expression (3) can be derived for vector 
waves just as in the scalar case, and, furthermore, is readily demonstrated to be stationary about the exact fields 
~and g: 

These results can be extended in a straightforward manner  to vector-wave scattering from rough perfect 
conductors. 
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4. SUMMARY AND CONCLUSIONS 

Stochastic variational principles have been developed for plane-wave scattering from conducting dielectric 
surfaces and volumes. These formulations have the general form 4~r<T> = < N I > < N 2 > / < D >  , and 
express the statistical moments of the scattering amplitude and the differential cross-section as quotients of 
other, more readily evaluated statistical moments. Their potential tractability promises to allow broader applica- 
tion of variational methods to scattering from random systems. 
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RESONANCE THEORY AND APPLICATION 
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Normal-mode series solutions for the scattering of a plane acoustic wave by submerged elastic spheres and 
cylinders have existed since 1951 [1-4], and curves of backscattered pressure vs frequency have been computed 
up to ka values of 1000 for materials with negligible acoustic absorption [5]. Here ka is 27talk where a is the 
target radius and h is the wavelength of the incident sound. The normal-mode series expression for the scatter- 
ing of an incident plane wave poe i~ by an infinite elastic cylinder in the geometry described in Fig. 1 is given by 
[4] 

°I Jo Z)L.- zJ  z) ]l-Z 
% 0 )  I h (kr)cos nO. (1) 

P,¢°) = - / ' o  . o IH.CZ~L, z - - h ~ )  l " 

In (1), Z = ka, r is the range, % is the Neumann factor, the J. are Bessel functions, the H. are Hankel func- 
tions of the first kind, and the primes denote derivatives with respect to the argument. The L. are defined by: 

a l l a l 3  

= P l a21a231 (2) 
Ln Ps ~ '  

where p and Ps are the densities of water and the target material respectively, and the a o are given in [4]. 

For the problem of backscattering in the far field, the expression in Fig. 1 can be simplified to [4] 

[ 11/2 

Ps(Tr)=--p°ei~r[ ~-~r] ei~/4~En(-1)nGn(Z)'n=o (3) 

Here, Gn(Z) is the expression in the brackets in (1). The backscattered form function f ~ 0 r ) i s  the dimen- 
sionless pressure variable defined for an infinite cylinder as 

f~(O) = " "12-zrll/=Ps(---~O), (4) 
l a J  po 

and from (3) and (4) the individual partial waves fn Or) are given by 

f~ (~') = ~ (% ( -  1)"G, (Z)),  (5a) 

f=('r,') =- ~ fn(1r). (Sb) 
n=0 

For Dirichlet and Neumann boundary conditions, (5) reduces to a simple form, as seen in Fig. 2. The 
steady state form function in Fig. 2 is made up of the interference of specular reflection and a FRANZ [6]-type 
circumferential wave [7]. This diffractive contribution is much stronger in the case of a rigid cylinder (Neu- 
mann boundary conditions) and can be isolated by experiments performed in  air where rigid-boundary condi- 
tions can be satisfied [8,9]. 

For bodies immersed in water, the form function curves are more complicated than those seen in Fig. 2, 
as demonstrated by the form function for a submerged aluminum cylinder given in Fig. 3. It was noted by pre- 
vious researchers that the major features of the elastic form-function curves are related to the free modes of 
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vibration of the target [1,10,11]. These features are identified in Fig. 3 by the labels (n, / ) ,  where n is the nor- 
mal mode number  n = 1, 2 . . . . .  and l is the particular eigenfrequency, 1 = 1, 2 . . . . .  

The form functions for various materials are generally greatly different [2,3], and can be measured to 
within a high degree of accuracy [9,12,13] for both submerged spheres [9,12] and cylinders [13,14]. Despite 
the disparity in appearence between form functions for various materials, it can be demonstrated that in general 
all solid targets made of materials whose density and shear speed are greater than the density and sound speed 
of water can be described in similar fashion. For such targets, the scattering solution can be interpreted in 
terms of a resonance behavior superimposed on a rigid background [15]. Solid elastic bodies can be regarded as 
rigid bodies except in the ka intervals over which resonances occur. This is demonstrated in Fig. 4, which 
shows a plot resulting from the subtraction of the n = 2 partial wave in the normal mode series solution for a 
ridid cylinder from the n = 2 partial wave term for an a luminum cylinder. The amplitude is nearly zero except 
in the ka region in which the (2,1), (2,2), and (2,3) resonances are excited. 

The resonance theory was mathematically formalized in terms analogous to the existing resonance formal- 
ism of nuclear scattering theory and this formalism can be found in [8,15]. The result derived in these latter 
references shows that an individual partial waves can be written from (5) as 

2i~o e2,~.[ 1/2r. 1 
f~(O) (i~rka)l/2 [ Z ,  - Z - 1/2iF n + e'¢" sin ~:, cos nO, (6) 

where the first term represents the resonance contribution and the second term is the result obtained for the 
Neumann  boundary condition. In (6), ~n is the scattering phase shift for a rigid cylinder, the Z,  are the ka 
values at which resonances occur, and the F ,  are the resonance widths. The results exemplified by Fig. 4 are, 
thus, formalized mathematically by (6), and apply to solid submerged objects whose densities and sound speeds 
satisfy the conditions described earlier. Circumferential wave description of the scattering by simple shapes were 
given by /SBERALL and collaborators [16-17] As discussed above, the rigid body form function results from 
the interference of specular reflection and a purely geometric circumferential wave. Elastic-body [16,17] 
scattering in water can be described in terms of R-type or Rayleigh type circumferential waves and a unification 
of the resonance formalism [8,15] and the circumferential wave results [16] has been accomplished [8,11]. 

A particular elastic circumferential wave, labeled Rt ,  R2 " • • Rt by DOOLITTLE [16], is related to all 
resonances having the same eigenfrequency label l ,  i.e., all the (n, 1) resonances are related to the R1 circum- 
ferential wave, all the (n, 2) resonances are related to the R2 circumferential wave, etc. The resonances occur 
when the circumference of the cylinder or sphere is exactly n wavelengths in length. In resonance terms the n 
is related to the number  of circumferential nodes and the I to the number  of radial nodes. Of particular interest 
is the R1 circumferential wave, since this is related to the leaky Rayleigh surface wave, as demonstrated in [18]. 
Observation of Fig. 3 shows that backscattered form-function features related to (n, 1) resonances are significant 
only at low ka. Experimental isolation of the leaky Rayliegh wave was attempted based on a consideration of 
the (n, 1) resonances in Fig. 3, and the wave was observed experimentally [19], as seen in Fig. 5, which shows 
the backscattered specular reflection and R1 circumferential wave contributions isolated at koa = 13.5 for an 
aluminun cylinder. Here, ko is 2~rfo/e where fo is the center frequency of the incident pulse. 

As seen in Fig. 3, the excitation of the (2,1) resonance marks the end of the purely rigid-like behavior of 
the form-function curve. By this is meant of that for ka values below the excitation of the (2,1) resonance the 
form-function curve for an a luminum cylinder in water is similar to that of the rigid cylinder (Fig. 2), and in 
general the excitation of the (2,1) resonance for any material having the properties discussed earlier marks the 
end of the purely rigid behavior. If a luminum were taken as a standard, the ka position of the (2,1) resonance 
(ka)2, l would be given closely by [8] 

Cshea r (material) 
(ka)z l  (material) = (ka)z l  (AI) • Cshea r (A1) ' 

The (n, 1) resonances are the lowest-frequency resonances strongly excited by a plane wave incident in water. 
They are related to a known mechanism, the Rayleigh surface wave, and shifts in postition of these resonances 
could give clues to the presence and position of flaws in materials. 

A simple, though not practical calculation was made to demonstrate the above possibility. Figure 6 com- 
pares the form function vs ka curves for an inflnte solid iron cylinder and an iron cylinder with a center hole 
whose diameter is 0.1 of the diameter of  the cylinder. Note the frequency shift in the (2,1) resonance whereas 
the (3,1) resonance is changed in amplitude but not shifted in frequency. This is due to the fact that at ka ~--- 
4.78 [the (2,1) resonance position] the radius of the cylinder is approximately 1/2 the Rayleigh wavelength, so 
that the Rayleigh surface wave is interacts strongly with the hole whereas at ka ~ 7.5 [the position of the (3,1) 
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resonance] the cylinder radius is a larger fraction of a wavelength and the interaction is smaller. As frequency 
is further increased, the Rayleigh surface wave has no interaction with the hole, i.e., the (4,1) and higher order 
(n, 1) resonances are not affected. If the hole were off center, the interactions should be different and the 
effect on the (3,1) and (4,1) resonances would become more substantial. It has been shown previously 
[9,10,12,13] that the ka position of the (n, 1) resonance nulls can be obtained with great accuracy and in a 
real-time framework [13]. The ka position of resonances with higher order eigenfrequencies I are also affected 
by the presence of the hole, but these are not considered here. 

The resonance formalism can also be developed and applied to problems in which the scatterer is con- 
tained in a solid matrix. A review of elastic wave scattering of both P and S waves from cavities and inclusions 
in a solid matrix is given in [20]. Of interest here are the results obtained from a resonance analysis of the 
scattering of a P wave by inclusions in a metal matrix. As in the case of the solid cylinder in water, the indivi- 
dual partial waves can be separated into a background term and a resonant term, and the ka position of the 
resonances is determined by solving an eigenvalue equation, which for the case of nonabsorbing media is a real 
equation with real solutions. Resonance solutions for the resulting P-wave scattering amplitude and the S-wave 
wave scattering amplitude were obtained for an iron inclusion in an aluminum matrix [21]. In the case of the 
P-wave scattering amplitude the results are analagous to those obtained for the submerged body cases con- 
sidered above, i.e., the background term is a rigid body solution. The derivation of the resonance expression 
for the spherical inclusion problem is given in [22]. The results are given for n = 1 and n = 2 in Fig. 7, and 
show the isolation of the resonance behavior. The relationship between resonances and circumferential waves 
in the solid matrix case is discussed in [22]. 

SUMMARY 

The scattering by submerged solid elastic bodies whose density and shear speeds are larger than the den- 
sity and speed of sound in water can be described in terms of a resonance behavior. The bodies act as rigid 
scatterers, except in the ka regions where free-body resonances are excited. This resonance behavior has been 
mathematically formalized in terms analogous to nuclear reaction theory. The relationship between resonance 
behavior and circumferential waves has been established and used to predict the presence of backscattering on 
aluminum cylinders due to the Rayleigh surface wave at ka values below 15. The ease of measurement of the 
(n, 1) resonances and shifts in their position due to the presence of flaws give a possible method of flaw detec- 
tion. 

The resonance solution to the scattering of a P wave by iron inclusions in an aluminum matrix bears some 
similarity to the description of bodies in a fluid in that for scattered P waves the background behavior is found 
to be rigid. 
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INTRODUCTION 

In the high-frequency domain the diffraction of elastic waves by cracks can be analyzed conveniently on 
the basis of elastodynamic ray theory. For time-harmonic wave motion, ray theory provides a method to trace 
the amplitude of a disturbance as it propagates along a ray. In a homogeneous, isotropic, linearly elastic solid 
the rays are straight lines, which are normal to the wavefronts. An unbounded solid can support rays of longi- 
tudinal and transverse wave motion. These rays are denoted as L-rays and T-rays, respectively. 

In analogy with geometrical optics, the simplest theory for diffraction of elastic waves by cracks may be 
called geometrical elastodynamics (GE). In GE a crack acts as a screen which creates a shadow zone of no 
motion, and zones of reflected waves. The geometrical theory of diffraction (GTD) provides a first correction 
to GE. 

For plane longitudinal and transverse waves, which are under arbitrary angles of incidence with a traction- 
free semi-irl/inite crack, the fields on the diffracted rays can be obtained by asymptotic considerations, as shown 
by ACHENBACH et aL [1,2]. The results can be expressed in terms of diffraction coefficients which relate the 
diffracted fields to the incident fields. Geometrical  diffraction theory provides modifications to the semi-infinite 
crack results, to account for curvature of incident wave-fronts and curvature of crack edges, and finite dimen- 
sions of the crack. In the usual terminology the results for diffraction of plane waves by a semi-infinite crack 
are the canonical solutions. For incident waves with curved wavefronts and for curved diffracting edges, the 
cones of diffracted rays have envelopes, at which the rays coalesce and the fields become singular. The 
envelopes are called caustics, and GTD breaks down at caustics. 

Results obtained on the basis of GTD have been presented in [3-5]. In [3] results obtained by elasto- 
dynamic ray theory have been compared with results obtained by numerical solution of a governing singular 
integral equation. 

1. EXPERIMENT 

Experimental results in the high-frequency range that are suitable for comparison with theoretical results 
have been reported by ADLER et al. (see, e.g., [6,7]). The sample was a circular disk (2.5 × 10 cm) of 
titanium alloy which contained a penny-shaped crack of radius 2500/~ parallel to the fiat faces, and located at 
the center of the disk. The disk was immersed in water. A transmitter launched a longitudinal wave to the 
water-titanium interface under normal incidence. This wave was transmitted into the solid, diffracted by the 
crack, and the diffracted waves were transmitted back into the fluid, where they were received by a second 
transducer. The experimental setup and the processing of the data are discussed in some detail in [7]. 

In the experimental work, the nature of the diffracted signals is determined by their arrival times. Since 
the first arriving signals are related to longitudinal waves in the solid, it is possible to gate out and separate the 
purely longitudinal diffracted signals from subsequent signals. By appropriate processing of the experimental 
data, as described in [7], the amplitude-spectrum is obtained for the longitudinal diffracted waves only. Thus, 
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for the present comparison of analytical and experimental results we need to consider only the primary 
diffracted body-wave rays in our analytical work. 

2. THEORETICAL RESULTS FOR A PENNY-SHAPED CRACK 

The interference patterns for the first arriving longitudinal waves in the fluid are generated by phase 
differences and amplitude differences on the direct rays from the two crack tips (see Fig. 1). Adding the pri- 
mary diffracted longitudinal fields from the points 01 and 02 we obtain at the point B in the far field: 

uL ~ F(O,Oo) exp[ i to (S /c t  + S i c  F) + i¢r/4] UoiF, (1) 

F(O,Oo) = H1 exp[ - i ( t oa /cL) (cos  0 - sin 0o)] + H 2 exp[i ( toa/cL)(cos  0 - sin 0o)], (2) 

sgn(cos 0)) Z (O L) IDL(O j;O !) I 
t t j  = ( ~ S j c L ) l / 2 ( l  + S j c ) l / 2 ( 1  + gj/~7)l/2(1 + ~1~)112 , j = 1,2. (3) 

In (1), UL is the  diffracted longitudinal field and iF is defined in Fig. 1. Moreover, co is the circular frequency, 
S = AB, Uo represents the incident wave at point 0, CL and Cr are the velocities of longitudinal waves in the 
solid and fluid, respectively, and a is the crack radius. The geometrical quantities are indicated in Fig. 1. In 
(3), T(OL) is the transmission coefficient at the solid-fluid interface, and DL(oj;O/) is the diffraction coefficient. 
For details of the derivation of (1) - (3), and the definition of C, E, and C, we refer to [7]. It should be noted 
that one of the terms/ /~  is imaginary, since the ray has crossed a caustic. Of particular interest is the absolute 
magnitude of F, 

IF[ = {[HI[ 2 + [H212 + 21Hl1 [H2I sin[2(oJa/cL)(COS 0 -- sin 0o)]} 1/2. (4) 

Here we have taken into account that either H 1 or H 2 is imaginary. 

3. COMPARISONS WITH EXPERIMENTAL DATA 

Theoretical results obtained from (4) have been plotted together with experimental data in Fig. 2. The 
frequency varies from 2 MHz to about 14 MHz. The angles in the solid are 0'(= zr/2 - 0) = 35 o, 45 o, 55 ° and 
60 o, respectively. The amplitudes of the first few cycles agree well. At higher frequencies (above 6 MHz) the 
experimental results are lower than predicted by theory. One possible explanation is the effect of attenuation 
which is not accounted for in the theory. In all cases the positions of maxima and minima of the spectra agree 
well. The locations of the maxima are significant for the inversion process. 

INVERSE PROBLEM 

The discussion of the previous sections has been concerned with the direct problem, that is the computa- 
tion of the scattered field when the size, shape and orientation of the crack are known. We will conclude with a 
few comments  on the inverse problem for plane waves incident on penny-shaped cracks, for the special case 
that the incident wave is known to be in a plane of symmetry of the crack. The geometry in the plane of sym- 
metry is then as shown in Fig. 1, where the incident wave is under an oblique angle with the plane of the crack. 
For a given point of observation, say the point B in Fig. 1, the unknowns then are 0o, a, and b. 

The theoretical expression for the amplitude spectrum given by (4) implies that the amplitude of the pri- 
mary diffracted field is modulated with respect to to/cL, with period 

P = ~'/[a Icos 0 - sin 0o1]. (5) 

It is of interest to apply (5) to the experimental measurements.  Since we know that at 0 o = 0 each amplitude 
spectrum will give a number  for a from the periodicity of the modulation. We have 

CL 
a 2 sin(0')Afav e ' (6) 

where 0' = 7r/2 - 0 and A fare is the average frequency spacing between two consecutive maxima. 

The results of the size determination are given in Table I. The agreement be tween actual crack radius 
(a = 2500/x) and the predicted values is excellent. 



108 

TABLE I 
Crack radius a computed from Eq. (6) 

for a penny-shaped crack in 
titanium (cL = 6330 m/s) 

0 '=  ~ /2  - 0 Af~v~ computed a in 
35 ° 2.18 2530 
40 1.87 2630 
45 1.83 2450 
50 1.68 2460 
55 1.60 2410 
60 1.47 2500 
65 1.39 2510 
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INTRODUCTION 

In this article, we present an analysis of scattering of acoustic waves by elastic and viscoelastic obstacles of 
arbitrary shape immersed in a fluid. This problem is difficult because the wave equation governing the regions 
inside and outside the scatterer are different and admit different types of wave solutions, and these solutions 
must  be coupled at the boundary by the continuity conditions for the pressure and particle velocity. To the 
authors'  knowledge, no detailed discussion with numerical results for both elastic and viscoelastic obstacles is 
available in the literature, except for circular and spherical 'obstacles. 

Here we apply the T-matrix or null field method to study our problem. The T-matrix method has been 
successful and computationally very efficient for studying the scattering of acoustic, electromagnetic, and elastic 
waves by single obstacles, finite numbers of obstacles, layered obstacles, and statistical distributions of obstacles 
[1]. In deriving the T-matrix formalism starting with the Helmholtz formulas in the fluid space, one arrives at 
a Q-matrix which is not square and, hence, cannot be inverted. Additional representation s of the scattered and 
refracted field must  be considered to overcome this difficulty. The analysis is explained in detail in [2,3]. 

1. FORMULATION OF THE PROBLEM 

We consider an elastic or viscoelastic scatterer of arbitrary surface S (with a continuously-turning unit nor- 
mal D) immersed in an invicid fluid. The elastic properties of the scatterer are given by the Lain6 constants X. 
and tz, and the mass density p, while the properties of the fluid are given by the compressibility h r and the 
mass density pl. If the scatterer is viscoelastic, X and/z are complex and frequency-dependent. 

A plane acoustic wave of unit amplitude, frequency to and wave number  kr is incident obliquely to the 
scatterer. We denote the incident-wave and scattered-wave displacements by u - °  and fi.s, respectively. The start- 
ing point of our T-matrix formalism is to express the interior and exterior Helmholtz integral representations 
for the fluid and solid as follows [2,3]: 

[~f(7), 7 outside 
~°(T) +ys{~r,. [h'. ~(T-T ' ) ] -  h "~r'" ~r (7, T')} ds'= / O, T inside s.S' (1) f 

For the solid, 

I~'(T), ?" inside ~1 
- f { ~ " . [ h ' .  ~(Y,, ? " ) ] - h . 7 ' - ~ ( Y ,  T ' ) dS ' }= [  0, ? 'outside : (2) 

where ~ is the displacement vector, ~' is the stress tensor and ~. and ~ are the Green 's  stress and displacement 
tensors. The terms with subscripts f r e f e r  to the corresponding quantities in the fluid. 

The philosophy of the T-matrix approach is to expand all the termsappearing in the integral representa- 
tions in terms of spherical vector basis functions, ~i,~m~, ~2~,,,,, ~03~,~,, ~0~, "r = 1,2,3. The subscript r = 1 
refers to the compressional wave functions, while z = 2,3 refer to shear wave functions. Since the fluid sup- 
ports only compressional waves, we need only the r = 1 component of the basis functions denoted by ~rn- 

We expand the incident and scattered wave fields, the field inside the scatterer, and the Green 's  tensors in 
terms of the basis functions: 



112 

and 

u-°(T) = ~'~ A, Re~f.  (T), (3) 
n 

7s(T) = ~ f .Ou~f .  (T), (4) 
n 

~'(7') = T. oq_,Re_~,, (7'). (5) 
n 

~/(T, T') = ikf ~ .~Ou~f . (r>)ReOf.(r<).  (6) 
pfoJ 2 

In the above equations, the symbols Ou and Re will represent the outgoing and regular functions, respectively. 
For example, Ou qJq = qJq, but, in contrast, Re~q means that, instead of using hn, we use the regular function 
j .  (at the origin). Substituting these expansions (3)-(6) in (1), and usir,.g the continuity and boundary condi- 
tions at the surface of the scatterer in the integral equation for the fluid, we obtain 

- A ,  = ]F.,iQn,~n,(Ou,Re)olTn,, (7) 

fn = ~.iQ.,~,,(Re, Re)a~n,, (8) 

where the matrix Q is given by 

[ouj  [ou I iol t ~ , '^  d S  Qn,~.n Re = k ~ f 2 f  h f W "  ~fn h" Re~. n, - h .  ~fn h" ~'(Rea),,) n (9) 
Re Of oJ s [ Re Re 

The Q-matrix has a 1 x 3 substructure and, hence, cannot be inverted. In order to obtain the desired T- 
matrix connecting A n and fn, we must use (2) until we arrive at a set of matrix equations that are invertible. 
To this end, we follow the work outlined in [2,3] to obtain: 

"~e~.,.,d., + ~.,R..,.,.,o~.,., = 0, (10) 

where the matrices P and R are given by 

PT.,,' = p - ~  fs[{  h" Re~f,,}{h . ~ ( R e ~ , n ) .  hl]dS, (11) 

and 

k, f s  - R . . . .  ' . ' =  {Reak,,n,)tang h ' =  - r(Re0,,n,) h)h .Re~ . }dS .  t)c° 2 • r ( R ~ . )  - ( h  "= - - (12) 

From (7), (8), and (10), we then obtain the following relationship between the incident and scattered field 
coefficients: 

f = TA, (13) 

where 

T = - Q  (Re, Re)R-1P [Q (Ou, Re)R-~P]-k  (14) 

The T-matrix defined by (2) is applicable to both elastic and viscoelastic obstacles of arbtirary shape 
immersed in a fluid. The wavenumbers for a viscoelastic solid are complex and frequency dependent. The T- 
matrix is symmetric for both elastic and viscoelastic scatterers, but the scattering matrix S = 1 - 2 T  is no longer 
unitary if the material has a complex elastic modulus. 

Once the scattered field coefficients are known from (13), the quantities of interest, such as backscattering 
and bistatic, absorption, and extinction cross sections, can be computed as a function of the frequency of the 
incident wave. One could also extend this formalism to layered obstacles immersed in a fluid [4]. Extensive 
numerical results are presented in [3,4]. 
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A B S T R A C T  

By means of the Resonance Theory of viscoelastic wave-scattering from cavities in solids, we examine 
several multipole contributions to the sonar cross sections of fluid-filled cavities in solid rubbers. The analysis 
is done first ignoring, and then accounting for mode-conversion in the solid rubber matrix. The results are 
analytically particularized to the simpler cases of: a) the nth multipole of a gas-bubble in water, b) the nth mul- 
tipo!e of a liquid droplet in a gas, c) the zeroth order multipole (i.e., monopole) contribution for a gas-filled 
cavity in solid rubber. Results for other multipoles are then numerically examined and displayed, up to the qua- 
drupole case. The program we have developed can generate similar results for any higher-order multipole and 
any combination of substances, in any of the above situations. 

I N T R O D U C T I O N  

Compressional plane waves traveling through elastic media can be scattered by a fluid obstacle contained 
within the medium. We have studied the case of spherically shaped obstacles [1], accounting for and ignoring 
the presence of mode-conversion in the solid matrix. The resonance theory for this situation is well docu- 
mented elsewhere [1,2] and will not be repeated here. We have also studied the monopole mode of vibration 
(i.e., n=0) in some detail [3] and found that the splitting of each modal contribution into "backgrounds and 
resonances" that characterizes this theory, was performed for the monopole case in an exact fashion without any 
linearization. In this contribution we extend those findings to other multipoles and to the particular situations 
mentioned in the Abstract. 

1. T H E O R Y  

The normalized bistatic (i.e., differential) scattering cross-section of an obstacle in a nonviscous elastic 
material was found to be [2] 

1 do" 1 K~ d 1 s 
a 2 dO ~P(O) + ~ --~ , (1) 

where the quantity a is the obstacle radius, Kd and Ks are, respectively, the dilatational and shear wavenumbers 
of the material exterior to the obstacle, and the quantities pP(O), fls(0) are the scattering amplitudes (or nor- 
malized form-functions) of the returned waves in the absence or presence of mode-conversion, respectively. 
These latter quantities were defined in (19) of [1] in terms of coefficients An, B,, as follows: 

l f f p ( O )  = . 1 ] ~ ( 2 n  + 1)AnPo(cosO), 
IKda n=O 

(la) 

fPs(O) = 7Ksa (2n + 1)B, Pn(cosO). 
n=O 

Coefficients An,B . were determined [1] by direct evaluation into the boundary conditions at the obstacle's 

surface, as the following ratios of 3 × 3 determinants: 
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where 

Re d H d12 d13 dll Re d12 d13 

An = - ~  Re d21 d22 ~23, Bn = - ~ n  d21 Red22 ~23, 

Re d31 d32 d31 Re d32 

(2) 

dll d12 d13 

D n = d21 d22 d23 (3) 

o d31 d32 

and the elements d 0 are listed in the Appendix. 

The interior field inside the cavity is controlled (see Eq. (11) of [1]) by a coefficient 6", of the form 

dll d12 Re dll 
1 

C n = - - ~ - d 2 1  d22 Red21. (4) 

d31 d32 Re d3t 

Using Eqs. (la) and the definition of backscattering (i.e., sonar) cross section, it can be verified that each 
partial-wave contribution contained within (1) reduces to 

where x = Kda is a real quantity in the absence of absorption in the outer medium. Clearly, the second term in 
(1) has no contribution in the backscattering direction 0 = Ir (because d P , ( - 1 ) / d O  = 0), or in the case where 
the host elastic medium can support no shear waves (i.e., an inviscid liquid of  vanishing shear speed Cs = 0 or 
r s = oo). This formulation already contains all the above mentioned particular cases, as we will see next. 

2. EXAMPLES 

We have shown earlier [3] that the coefficient An given in (2) can be written in the convenient form 

A =1{ h,(2)(x) - ~ [  L(2)L~ M ] ' ) F , ]  - M ( 2 ) F " ]  1}, 
where 

n (n + 1)(1 - ;:O)) 
L.(') = ~.(') + 

n (n + 1) - 1 - (x~2/2) - ~,O) 

and 

3 , / ( , )=1  + 4 ~ ' f  ) 2n(n + 1) 11 (1 - ~(°)(1 - ~,(1)) ] 
x 2 x 2 n ( n  + 1)  - 1 - (x~2/2)  - ~(1) 

(6) 

_e_o £ (~x )  ~(~)= h.(') ~"(') 
F. = p f l J X  jn(13x) , (x)  ' h.(1)(Xs) " 

and where we defined x = Kda, xs = Ksa, fl = kf /Kd,  and i = 1 or 2. The wavenumber in the fluid interior to 
the obstacle is k f  = ~ / c f ,  and cf is the sound speed in it, and ca is the dilatational speed in the matrix. An 
analogous expression can be found for B.. 

Case 1 

The monopole case for a fluid-filled cavity in an elastic solid. In this case n=0 and we can show that 

• 4 ,)1, jo x) 
Lo (') = h( i ) (x  ) , Mo (') = 1 + --~s2[ ho(i,(x) , Fo = p f l J X j o ( f l x ) ,  (7) 

where for an elastic matrix we have/3 = c J c f .  Coefficient Ao then takes the simpler form 

pfx jo(X) jo  (f ix) - p/3xjo(/3x){jo (x)  + ( 4 x / x } ) Z ( x ) }  

A° = - pfxh,,(1)'(X)jo (f ix) - O/3Xjo(/3x)lho (i) (x)  + (4x/xf i )  ho(1)'(x)} ' (8) 
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in agreement with [3]. Coefficient Co can be shown to take the form 

Co = - (p/ix) (9) 
• pfxjo(xf)ho(1)'(x) - pxfjo(Xf){ho(1)(x) + (4X/Xs2)h(1)'(x)} ' 

where x:  = f ix  = kfa. Equations (8) and (9) have the same denominators which show that the same reso- 
nances of the filler are communicated to the cavity wall. 

Case 2 

The general multipole case when the outer medium is another inviscid fluid. Here, xs ~ oo (or c, = 0) 
and we can show that 

L.  (`) = xh'(i" (x)  ~ - f l x [  j ;  ( f x )  ] (10) 
h( i ) (x)  , M , =  1, F n = Of [ J , ( f x )  l" 

Coefficient A,  then takes the form 

pfxj£ (x)j,,  ( f ix)  -- p f lx j  n ( f x ) j  n (x)  
A n = p fxh(1) , (X) jn( fX  ) - p fx j , i (~x)h , } l ) (x )  . (11) 

This is the coefficient controlling the sonar cross section of gas bubbles in liquids or of liquid droplets in gases. 
It already accounts for the mobility of  the scatterers due to radiation pressure, and the monopole subcase is 
merely obtained by setting n=0  in (11). This equation also contains the "rigid" and "soft" sphere results which 
are, respectively, 

Jn (X) Jn (X) 
Of = 0% A ,  h ( W ( x  ) , and p f  = O, A ,  h (1 ) (x ) .  (12) 

Coefficient C, can be shown to take the form 

dll Re dll 

C, = d21 Re d21 = (p/ix) (13) 

dli d13 pfxj , , (xf)hn(l) ' (x)  - pXf jn(x f )h(1) (x )  ' 

d21 d23 

as xs = oo. This coefficient controls the behavior of the fluid inside the bubble or the droplet during the 
scattering process. The monopole case is recovered setting n=0  in (13). As we discussed in Case 1, (11) and 
(13) have the same denominators. 

3. NUMERICAL CALCULATIONS 

The numerical calculations are performed using the program we developed for the general forms of the 
coefficient as given in (2)-(4). Equations (8), (9), (11) and (13) give the explicit forms of the coeffÉcients 
which are computed whenever either n=0 ,  or c s = 0, but these forms need not be explicitly programmed to 
generate the graphs displayed here, or any similar ones. 

In Fig. 1 we plot the modulus of  the normalized partial-wave backscattering amplitudes as in Eqs. (20) of 
[1]. These quantities are: 

MOD(PP) ---- lfPp(1r) = + ( 2 n  + 1 ) A , .  (14a) 

and 

MOD(PS) - -  l f P ,  s(zr) = •i a (2n + 1)B.. (14b) 

They are plotted versus Kda for an air-filled cavity in solid rubber (assumed lossless). The material parameters 
for air, rubber, and later for water, were all given earlier [1,3]. Columns two and three respectively of Fig. 1 
display the plots of MOD(PP) and MOD(PS). The first row of Fig. 1 corresponds to the monopole (n=0) case. 
The second and third rows, respectively, correspond to the dipole and quadrupole cases (i.e., n = l  and n = 2). 
The graphs all have logarithmic ordinates (i.e., dB) and since for air-in-rubber the resonances are so narrow, 
the plots have been produced in the narrow region around the first resonance of each multipole contribution, so 
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that their width becomes visible in the graphs. For example, the dipole (n= l )  fundamental resonance shown 
in the central graph of Fig. 1 is seen to occur for 0.508 ~< Kda <~ 0.516. The first column of Fig. 1 is analogous 
to the second, but now for an air bubble in water. The monopole plot in the top row of the first column is the 
well known result [4] for the "giant monopole resonance" of air bubbles in water. Its peak occurs at Kaa 
0.013 and has value MOD(PP) ~ 71. All the plots in Fig. 1 are for the fundamental resonance (l = 1) of the 
three multipole contributions (n=0,1,2) shown. Similar plots can also be generated for the overtone (l = 2,3, 
• ..) resonances in each multipole. We have displayed some of these in our earlier work [3]. The results in Fig. 
1 and in [3] have shown the dominance of the monopole contribution over that of all higher multipoles. The 
resonances of the higher order multipoles manifest themselves, in summed cross-section plots, as small spikes 
superimposed on the graph for the monopole contribution to the cross-section. Analogous results for water 
drops in air (not displayed here) are obtained from (11) in identical fashion as for air bubbles in water, but rev- 
ersing the labels for air and water. The overall appearance of these plots is similar to that of the plots in the 
first column of Fig. 1. 

The monopole situation (n=0) of gas-filled cavities in nonabsorbing rubber in the second and third 
columns of the first row of Fig. 1 deserves further attention. The first row of Fig. 2 shows the non-mode- 
converted results (i.e., MOD(PP)), while the second displays the mode-converted ones (i.e., MOD(PS)), all 
for the same air-filled cavity in rubber plotted versus Kaa in the range 0 ~< Kda <~ 3.0. The first column shows 
the composite modal contribution and the third column exhibits the smooth "background" of an evacuated cav- 
ity. The central column, obtained as the modulus of the difference between the quantities whose moduli are 
displayed in the first and third columns, shows the isolated resonances (fundamental and overtones) of the filler 
substance (i.e., air), in the form now typical of a problem analyzed by the Resonance Theory of Scattering. All 
resonances of the MOD(PP) and MOD(PS) plots (viz. four are visible in these plots), occur at the same loca- 
tions, as explained before [3]. 

4. CONCLUSIONS 

The computerized code we have developed to analyze the scattering of p (and s) waves from fluid-filled 
cavities in elastic or viscoelastic solids can handle all the particular situations we have described here. These 
include all the multipole contributions to the sonar cross section of fluid spheres contained in different fluids. 
We can study any possible combination of two fluids, or of a fluid within a solid. There is no difficulty in 
analyzing each and every resonance (fundamental or overtone) of the composite multipole contributions, by 
splitting them into their background and resonance parts. For bubbles or cavities the backgrounds are usually 
"soft", and for liquid droplets they are "rigid". All these features are possible by merely adjusting some of the 
parameters of our general Program, and we have displayed many plots to illustrate these points. 
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A P P E N D I X  

The elements dtj used in (2)-(4) and found in [1] are 

dll = Kdah~l)'(Kda), 
d12 = n(n + 1)h~l)(K~a), 

dx3 = - k l a j ' .  (k la  ), 

d21 = [2n(n + 1) - K~a2]h.(l)(Kaa) -- 4Kdah~t)'(Kda), 

d22 = 2n(n + 1)[Ksah~1)'(K~a)- h~l)(Ksa)], 

d23 = ~Of/O)K2sa2jn (kfa), 
d31 = Kdah~l)'(Kaa) -- h.(1)(~da), 

_ 1 2 2 (1) d32= [n(n + l ) -  1 "~Ksa ]hn (Ksa) Ksah.(l)'(Ksa), 

d33 = 0. 
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ABSTRACT 

The recently proposed mixed representation in quantum mechanics is discussed and applied to the scatter- 
ing of a particle by a potential in three dimensions. Such scattering becomes equivalent to a one-dimensional 
reflection problem with a nonlocal potential. 

The mixed representation was recently introduced [1] into quantum mechanics with the idea that it may 
be useful in scattering theory. It is situated partly in momen t um space, specifying the direction of the 3n- 
dimensional m o m e n t u m  vector of  n particles and thereby the directions of their n momenta  (2n variables) as 
well as their energy fractions (n - 1 variables), and partly in configuration space,  specifying a position along the 
"direction of motion." Thus,  the representation fixes exactly those momen tum variables that are independently 
specified as the initial and final ones of an n-particle scattering amplitude, and it leaves one variable in 
configuration space for the description of the motion of a wave packet. Such a representation is possible 
because the unit vector in the direction of the momen t um commutes  with the projection of the position on the 
momentum:  

[q'p/ lp l, p/ lpl] = O . 

For an odd number  of particles, the mixed representation is closely related to the Radon transform; for an 
even number  of  particles, to a generalized Euler transform. Contrary to well-known restrictions [2] on the 
range of the Radon transform, the transformation from the coordinate representation to the mixed representa- 
tion has been proved [1] to be a one-to-one unitary mapping of L2(R m) onto L2(Sm-tx  R+),  S m-1 being the 
unit sphere in m dimensions and ~ the positive reals. 

Let q~, a = 1 . . . . .  n, be the position vectors of n particles of masses ms, and let p,, be their m o m e n t u m  
vectors. It is convenient to use a configuration space ~t:~.3n made up of the vectors z,~ = m~/2q~, a = 1 . . . . .  n, 
and a momen tum space made up of k~ -"~ = m,~ p~. We then have 

k-z= ~ p~-q~, 

where the left-hand side denotes the inner product in ~3n and the right-hand side in ~3. Then, 

1 .2 1 .. '2 [P'~I2 

where E is the total kinetic energy and [3] 

0,~ = ( E J E )  '~ p~ = k J I k J ,  

with/3,~ = p J  IP,~ I a vector in R 3 whose direction is that of p,~ and whose squared magnitude is the energy frac- 
tion of particle o~. Thus,  the vector 0 in ~3n made up of the components 0,~, a = 1, . . . ,  n, in R 3, is of unit 
magnitude and denotes a point in S 3"-1. It specifies the directions of the momenta  of all the particles as well as 
their energy fractions. Let 

f ( k '  = I]-[m,~l 3/4 <Pl . . . . .  P.I> 
L-~- J 
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be a momentum-space wave function (where the right-hand side denotes a normalized wave function in Dirac 
notation). We then form 

3n-1 
f ( £ k )  = k ~ ?(k)  

for k ) 0 and extend it to k < 0 by the symmetry 
3n-1 

f(fc, k) = ( -1)  2 f ( - f ' , - k )  
for odd n, and by 

3n 

f(r<,k) = (_~)T ](-i<,-k) 
for even n. 

The wave function in configuration space is then given by 

<q l  . . . . .  q,l> = [nmo,}3/4 f(z), 

where 
-3tt 

f ( z )  = (2rr) ~ -  f d3"k e ik'Z ] ( k )  , 

and the wave function in the mixed representation by 

f(O,x) = (2~r) -v2 f___: dk e'~ f(O,k) . 
I f f  E L2(•3"), then f eL2(S3"- lxR+)  and 

f0= ~ f dOIT(O,~)i~ = f a~"zis(z)l~ • 
For negative values of x we have 

I 3n-1 
[(-1)~- ](-b,-x) if n is odd, ]6,x)  i J,, 
[ ( -1 )  ~- Y(-O,-x) i f n  is even. 

The direct relation between ] a n d  f m a y  be written formally [1] for odd n 

i-3n , 0 I 3nfl 
i f 

and for even n 

= -~Xl-- f d3nz f(z) 
i x _ ~ . z [ , ~  • 

These formulas show the relation of the mixed representation to the Radon transform or Euler transform, 
respectively. The transformation function from one representation to the other may then be written 

<b,xiz> = (2~r)'-:" 11-[m:13t41-1 0 13~-, 8 (x -~ .z )  
t ~  I t i -~--~xJ 

for odd n, and 

<b,x l z>  = (2~) -~-  m,~ 3/4 IX 0 Zl 
0x  

for even n. 

The principal virtue of the mixed representation is that in it the kinetic energy operator becomes simply 

1 d 2 
/40 9_ dx 2"  

The price for this, however, is that the potential becomes complicated and generally nonlocal in x. 
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Let us discuss a one-particle scattering problem with an external potential V. The transformation function 
gives us immediately that in the mixed representation the potential is represented by the integral kernel 

^ ^ t  t < k x l v I b ' , x ' >  - v ( o , o ; x , x ) =  (2~r) -2 V ( O , O ' ; x , x ' )  , 

where 

Y/(b,b';x,x') = f cPr V(r) ~(x-b.r) 8(x'-~'.r), 
in units such that m = 1. For orientation purposes, notice that if V vanishes outside a sphere of radius R then 
V(O,O',x,x') vanishes when Ix-x ' l  > 2R. Also, notice that the local (i.e., multiplicative) nature of  the poten- 
tial in configuration space manifests itself in the mixed representation by the fact that for 0 = 0' V becomes a 
distribution concentrated at the point x = x', and for 0 = - 0' it is concentrated at x = - x'. If x and x '  are 
allowed to take on negative values, then V has the obvious symmetries 

v(~, ~',x,x') = - v ( - b ,  ~' ,-x,x')  = v ( - b , - b ' , - x ,  -x ' ) .  

It is also symmetric in its variables, 

v(b, b',x,x') = v(~', b ,x ' ,x ) ,  

and real; thus, hermitian. 

The function V i s  defined as an integral over the intersection of the two planes O.r = x and O'.r = x', 
whose normals are 0 and 0', and whose normal distances from the origin are x and x', respectively. The integral 
is, therefore, a one-dimensional one, over the line of intersection of the two planes. It can be written as fol- 
lows: 

V(O,O ,y,y ) = Y Y , 

where 

and 

f~(z,b) = "~j_~ at V(z+bt), 
which is known as the x-ray transform [4], because it is used extensively in radiology. 

The transformation function also immediately leads to the inversion formula 

(27r) - 2 f  d O d O '  V ~ ,  ^ ^ '  ^ ^ '  (0,0 ;0.r,0 -r) = V(r) 83(r - r  ') , 

in which the subscripts x and x '  indicate differentiations with respect to the variables x and x', x being subse- 
quently set equal to O.r, and x '  to 0'.r. The fact that this integral over two unit spheres comes out to be a dis- 
tribution concentrated at r = r '  is attributable solely to the distributional nature of V(0, O';x,x') when 0 = + 0'. 

The Schr6dinger equation in the mixed representation reads 

- , "  (~,x) + 2 f  dfi'fo~,~'V(~, b';x,x')O,(fi'J)= k2t~(O,x), 
on the half-line 0 < x < co. We may extend it to the whole real line by demanding that 

¢(~,x) = - ¢ ( - f i , - x )  . 

Because of the symmetry of V, it then follows that 

^ ^ t  t 

At large distances, • is supposed to become equal to the transform of e ik'r plus outgoing waves. The 
Lippmann-Schwinger equation for the physical wave function in the mixed representation becomes, therefore, 

^ t  ^ 

,~(o ,O,x) = ¢o(~',~,x) i ~ eiklx-x'l f ab" ^' ^'' ' ^" ^ " - V ( O  , 0  ;x  , z " )  ,  y_o XSo  X ,, 0(o ,O,x ) 

where 

~o(O',O,x) = f f [ 8 ( 0 ' , 0 ) f i e , _  8(~, ,_~)e- ,~, ] ,  
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which corresponds to ~b0(k, r) = (k/47r) e ik'r. The antisymmetry of the potential implies that a solution of this 
LS equation for x > 0, defined for x < 0 by the same equation, automatically satisfies the correct antisym- 
metry condition. Thus, the integral over x" may be replaced by one half of the integral from -oo to 0% and the 
equation may be considered as an equation for qJ for -oo < x < c¢. 

The scattering problem now becomes completely equivalent to a one-dimensional reflection problem with 
a nonlocal potential. If we define a solution f l  by the equation 

^ t  ^ i fl(O ,O;x)= 8(0',b) e i ~ -  - ~  f_¢¢ dx' f_~ dx" f aO"e ikjx-x'l V(O',O";x',x") ~,1" ,t6", O'x ''~ 

then the antisymmetric part of f l  just equals q~, 

^ t  ^ 1 q,(o ,o,x) [f~(6',O,x)- ^' = f l ( - - O  , O , - - x ) ]  , 

while its symmetric part equals the symmetric part of the inhomogeneity. 

Let us suppress the dependence on 0, analogous to a matrix notation. Then the integral equation for f l  
reads 

i (x) = I e ' ~ -  - ~  f ~  dx' f_~ dx" e ik'x-x'l V(x ' ,x") f l (x")  . fl  

This function describes a transmission-reflection problem for incidence from the left, because for x ~ oo it 
contains only waves travelling to the right. The transmission and reflection amplitudes are given by 

i 
r -  r,= a -  -ff  e -i'~' V(x',x") f l(X") , 

'f° . . . .  

R ~ R I = - - ~  ~ dx' V ( x , x  ) f l ( x  ) • 

We may similarly define 

i ~ e i k [ x - x ' l  ' , x  " " f2(x)  = I e - 'k~-  - ~  f'_= dx'f_~oo dx" V(x )f2(x ) ,  

which leads to the transmission and reflection amplitudes from the right, 

i p ~  

: l -  j _ o  

i 
R r  = - -  f ' _ ,  . 

Now, it follows from the symmetry of Vthat 

f2(6', O,x) = f 1 ( - 0 ' , - 6 , - x ) .  

Introducing the "matrix" 1 whose explicit representation is 8 ( -0 ' ,  0), we may write 

f2(x)  = l f t (x ) l .  

It follows that 

T r = 1 T 1 ,  R r = IR1.  

Furthermore, 

T =  1 - I R  , 

and use of the integral equation in R shows that R is symmetric, 

R = - ~ .  
Expressing f~ as a linear combination of f l  and f2 leads to the equation 

Tr R~I + RI T*= O, 

(where the asterisk denotes complex conjugation) or equivalently, 

2RR* = R1 + IR*. 
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The S-matrix for the one-dimensional problem is defined by 

[ Tj Rrl [ I R IR  IRI I 
s = [R,  Z l  = 1 - R ~  • 

One easily finds from the above equations that S is unitary, 

"SS ~ = S*S= I . 
Finally, by returning to the customary expression for the scattering amplitude 

1 fd3r4~o(b,,r)V(r ) ~(b,r)  a (b ' ,O) = -  

in  the present units, one finds that 

A = (4rri/k)IR . 

The reciprocity theorem [5] and the generalized optical theorem [6] then follow from the listed properties of R. 

The outlined formalism demonstrates the equivalence of the three-dimensional scattering problem, in this 
representation, to the one-dimensional reflection problem with a nonlocal potential. The demonstration of 
existence and uniqueness of solutions requires L2-Fredholm methods and iterating the equation once. The 
principal effect of the nonlocality of the potential is that analyticity properties are impossible to prove unless the 
potential has compact support. This is, of course, a serious disadvantage and it is not likely to be a temporary 
lack of success. The reason is that, even though the three-dimensional wave function is the boundary value of 
an analytic function of k, regular in the upper half plane, its Radon transform 

hk (~ ,x ) = fd3r 'Ok(r) 8(x-O.r) 

need not have such an analytic extension because for complex values of k the integral diverges. 

The use of the mixed representation in the three-particle scattering problem is the next step. It has not 
yet been taken. 
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INTRODUCTION 

This article is concerned with the approach to quantum-mechanical scattering theory in which one tries to 
deduce existence of the M$11er wave operators by studying the stationary-state wave-funcfions of the Hamil- 
tonian. Various applications of this approach can be found in the literature. For nonradial potentitals, perhaps 
the most famous work is by IKEBE [6]. For the radial case, with which we shall be almost exclusively con- 
cerned here, the paper of GREEN and LANFORD [5] is probably the outstanding reference. In recent years, 
the approach mentioned above has been somewhat overshadowed by others, in particular the powerful and suc- 
cessful trace-class methods. Our theme here is that the approach via stationary-state wave-functions still has its 
attractions. In particular, if it is successful, one obtains a concrete expression for the M$11er wave operators in 
terms of the stationary-state wave-functions, providing a connection between the conceptually satisfying time- 
dependent theory and the experimentally important time-independent theory. Also, if radial potentials are stu- 
died, weak asymptotic completeness is usually obtained "free". Finally, and these are the points which we shall 
emphasize: (i) for radial potentials, the aproach is extremely simple conceptually: modulo a few technicalities, 
the entire problem boils down to the question "How fast does a solution of the radial Schf6dinger equation 
approach 'free'  behavior as r ~ oo ?"; (ii) the approach has recently been used [1-3] to analyze scattering prob- 
lems which had not been dealt with by other methods, the premier examples being scattering by radial poten- 
tials of the VON NEUMANN-WIGNER-type [12] and other oscillatory potentials of slow decay. These are not 
"short range" potentials, and are difficult to analyse by methods which focus only on the "size" of the potential. 
The oscillations of the potentials, nevertheless, mitigate their total impact on the scattering process, and a 
natural way to assess this total impact is to study the stationary-state wave-functions, whose behavior reflects 
not just the value of the potential at a point but its net effect over an interval. 

We begin with a heuristic discussion of scattering in three dimensions, and then pass to the case of radial 
potentials, which effectively reduces the problem to one dimension and the method of GREEN and LANFORD 
[5]. 

1. REMARKS ON SCATTERING IN THREE DIMENSIONS 

As stated above, this section is heuristic. Under appropriate assumptions, it can be rigorized. Let Ho 
denote Laplace's operator defind in the usual way on L2(lq, 3) so as to be self-adjoint. Let 

H =  Ho + V, (1) 

where Vis a real multiplicative operator which is well-enough behaved so that H c a n  be defined as a self-adjoint 
operator on L2(~.3). We wish to establish existence of the strong limits 

W ~ = s-lim e iHt e -iI'I°. (2) 

If the limits in (2) exist, there is an expected connection between W -+ and the "stationary-state wave functions" 
$-+ (k, x) for H. The expected connection is this: define 4 -+ (k, x) as the solution of the equation (k = Ikl) 

e~=iklx-x'l 
tb-+(k'x) = e ' k ' x - - ' ~  - Y Ix - -x ' ]  V(x')*+-(k'x')d3x'" (3) 

Then, if g E L2(~. 3) has Fourier transform ~, we have (in the sense of limits in the mean) 

g(x) 1 y eik.X~(k)d3k 
(2~-)3/2 



129 

and 

(W-+g) (x) = ~ f qs + (k, x)~(k)d3k. (4) 

Thus  the action of W ± consists simply in replacing e ikx by qJ'+ (k, x) in the Fourier integral for g. 

If one does not know the limits in (2) exist, one can try to prove it using (4). Namely, one defines W "+ 
by (4), and attempts to verify that 

lira I le- iH'W+-g-  e-~n°'gll = O. (5) 
t ~ ± ~  

Now e-~t4°tg is obtained by inserting e -ik2t in the first integral in (4), and formally, at least, e-iHtW'+g is 
obtained by doing the same thing in the second integral in (4). Thus (5) becomes 

, lima[I f Irk "+ (k, x) - etkX]e-ik2r~(k) d3kll = 0. (6) 

The truth or falsehood of (6) depends of course on the function 

R ± ( k , x )  = ~ ± ( k , x )  - e ik'x. (7) 

R + (k, x) measures the distance between the stationary state wave function and its asymptotic plane-wave form 
for large Ixl. Intuitively, (6) will hold if 4 -+ (k, x) approaches its asymptotic form "fast enough" as Ix[ ~ ¢~. 
Thus, if the steps leading to (6) can be justified, existence of W "+ is seen to depend on the rate at which 
~b ± (k,x) approaches its asymptotic form. To see how an attempt to prove (6) might go, take the expression 
for R '+(k ,x)  from (3) and insert it into (6). Reverse the integrations over k and x', and bring the L 2 norm 
inside the x' integral to bound the norm in (6). This results in the following estimate for the norm in (6): 

1 e=i~lx_x,l_i~2t~.+ h -+ (t) = -~- f l  V(x') I II ~ f (k, x')~ (k)d3kll d3x'. (8) 

The problem is to show that h+-(t) ---, 0 as t --* _+oo. Suppose we assume that V E LI(R3). Then by 
Lebesgue's  Dominated Convergence Theorem, h "+ (t) will approach zero if we can show that (i) the norm in 
(8) is bounded by a constant (independent of t and x') and (it) for each fixed x', the norm in (8) approaches 
zero as t --* _+ oo, 

Now changing variables in the x integral from x to y = x - x', we obtain the following expression for the 
square of the norm in (8): 

4"rr f o  ~ f e =ikr- ik2t~ -+ (k, x')~ (k)d3k2dr. (9) 

If qJ-+ (k, x') can be shown to be bounded as a function of k and x', there is no difficulty in verifying that the 
expression in (9) has properties (i) and (it) above. No crafty analysis is required: (i) follows from Plancherel 's 
theorem and (it) from standard lore on solutions of the free Schr6dinger equation. 

Although the argument just given is very easy, it is not, as far as we are aware, a popular one. The rea- 
son is that the suppositions made regarding q~-+ (k, x) are difficult to verify, and this in turn is due to the fact 
that the integral equation (3) is rather clumsy to work with. If V is a radial potential, however, we can trade, 
the integral equation (3) for an ordinary differential equation, and arguments like that sketched above become 
manageable. 

2. RADIAL POTENTIALS:  THE METHOD OF GREEN AND LANFORD 

In this section we shall proceed rigorously, but at times without complete details when these can be easily 
found in the literature. We now assume that V is radial and satisfies KATO's  condition of being the sum of a 
square-integrable and a bounded potential [7]. This guarantees that H is self-adjoint with the some domain as 
H o. (Weaker assumptions on V can be made [10]. We do not strive for full generality here.) We note that 
under this condition V satisfies the standard requirement for studying the radial Schr6dinger equation: 

f01 < oo. By separation of variables, the problem of establishing existence of the M4~ller wave rJ V(r) tdr  
operators of (2) is transformed in a standard way [5] into a succession of problems on L2(0,oo): for each 
l = 0, 1, 2 . . . . .  let hol and h I be the operators 

d 2 1(1 + 1) 
hol = - dr-- ~ + r--'-"-i"'-- 
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h t = hot + V(r). (10) 

These operators are defined in the obvious manner  on C ~ functions of compact support in (0,c¢). For 1 > 0 
the operators so defined are essentially self-adjoint, and for I = 0 they are extended to self-adjoint operators by 
fixing zero boundary conditions at 0 [5]. Then  the existence of the limits in (2) can be proved by showing that 
for each I the limits 

w; -+ = s-lim eihlte -ih°lt (11) 

exist. This can be attempted by the method of GREEN and LANFORD [5], which is just the one-dimensional 
version of the argument  outlined above. Instead of using an integral equation like (3)~ we seek the stationary- 
state wave-functions ~; (k,r) of ht as the solutions of the radial Schr0dinger equation 

{ d2 l(l+l---'----~) +V(r)}qs,(k,r)=k~,(k,r) ,  2 + r2 . (12) 

which are 0(r ;+l) as r ---' 0. (If V is not continuous, then (12) may not have a literal solution. In this case, 
one simply passes to a corresponding integral equation. This is easily done after (12) has been converted to 
matrix form as in (16) below. This integral equation is not analogous to (3)-- i t  is as easy to manage as (12). 
For simplicity, we shall write all equations as if V were continuous.) If V has suitable behavior for large r (we 
shall specify some "suitable" V soon), then any solution of (12) will approach a linear combination of the plane 
waves e ±ikr as r ---' 0. For the solutions Ol(k,r) which are O(r TM) as r ~ 0, this fact is usually written as 

Opt(k:) = sin(kr - -~ -  + 8;(k))  + Rt(k,r), (13) 

where R;(k,r) ~ 0 as r - "  oo and 8t(k) is, of  course, the "phase shift." Now arguments analogous to those 
given above for the three-dimensional case show that in order to deduce existence of the limits (11) it is 
enough to show that 

lim : R;(k,r)e-;k2t~(k)dk = 0 (14) 

for ~ E L2(0,oo), and where the norm intended is, of  course, the norm in L2(0,oo). (As in the three- 
dimensional case, some technical points must  be settled before concluding that (14) implies existence of the 
limits in (11). One must  show that an integral of the type Jc,;(k,r)~(k)dk actually belongs to L2(O, oo) and 

- ih ' t l  . . . . . . . .  tk' 2 t  that e acting on this integral is reahzed by multiplying the lntegrand by e-  . In the one-dimensional 
theory these technical points are normally very easy to handle [3], especially since one need actually verify the 
results only for ~ lying in a dense subspace of "nice" functions, as remarked below. These points are easily 
dealt with under our hypotheses on V below.) If (14) can be shown to hold, then we have the usual explicit 
representation for wt±: let qJo;(k,r) denote the standard solution of (12) with V = 0 (~o;(k,r) = krj;(kr)). Let 
g E L2(O, oo) have the expansion 

f 2 ~ I/2 

g(r)= l"~ I Yo ~°(k'r)g(k)dk" 

Then 
I 2 ~ 1/2 

(wt±g)(r) ~ l"~ I YO e:~i~'(k)~l(k'r)g(k)dk" 

These formulas are analogous to (4), but they are more revealing in that, if they hold, then it is clear that the 
ranges of the operators wt ± are identical. If this holds for all l, then the ranges W ~ are identical, and we have 
weak asymptotic completeness with no special effort. The fundamental point to be appreciated, however, is 
that, modulo a few easily handled technical details, the entire analysis boils clown to verification of (14), and 
(14) in turn boils down to the question: "How fast does ~;(k,r)  approach its asymptotic form?" This is now a 
problem in ordinary differential equations, and the power of the method of GREEN and LANFORD [5] rests 
in the fact that ordinary differential equations are so well understood. 

We now investigate the validity of  (14) under some special hypotheses on V. By a standard argument,  in 
order to obtain existence of the limits in (11), it suffices to verify the existence of the limits on a dense set. 
Correspondingly, (14) need only be verified for a dense set of  functions ~, and we choose ~ to be a C °O func- 
tion of compact support in (0, oo). A second point is the following: for fixed r, the k-integral in (14) vanishes 
as t ---, ± oo  by the Riemann-Lebesgue lemma. If Rt(k,r) is bounded for r ~< R > 0 and k in the support of  
~, as will always be the case for the potentials we study, then Lebesgue's  dominated convergence theorem 
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snows that the portion of the L 2 norm in (14) referring to r ~< R approach6s zero as t ---* ___oo. Thus, in (14), 
we need really only prove convergence to zero of the portion of the L 2 norm referring to r >/ R, i.e., the norm 
in L2(R, co). This is a minor point, but is a technical help. 

We shall begin by proving (14) under the hypothesis V E L 1 (1, oo). Existence of the M611er wave opera- 
tors is, of course, known for this case, but the only proof in the literature appears to be that of KURODA [8], 
who combined the weaker results originally proved by GREEN and LANFORD [5] with an approximation 
theorem based on trace-class methods. (Kuroda's method gives additional information not obtained here.) We 
wish to illustrate that the method of Green and Lanford alone is equal to the task, and that the proof is not 
hard. (J. Dollard and C. Friedman, submitted.) 

We drop the index / and write w(r) I(l + 1) + V(r). Our problem then is to analyze solutions of the 
r 2 

radial Schr6dinger equation 

-tO"(k,r) + w(r)q~(k,r) = k2(qs(k,r). (15) 

H We convert (15) to the equivalent matrix equation: writing q~ = qj , (15) becomes 

~'(k,r)  = A (k,r)rb(k,r), (16) 

with 

I ° A ( k , r ) =  w ( r ) -  k 2 " (17) 

Anticipating that (a(k,r) will asymptotically approach a combination of plane waves, we factor out the plane- 
wave behavior as follows: setting 

eikr e-ikr ] 
E ( k , r ) =  Ckeikr_ike_ikrl, (18) 

we write 

¢b (k,r) = E (k,r)O (k,r). (19) 

O(k,r) is then found to satisfy the equation 

O'(k,r) = B (k,r)O (k,r), (20) 

with 

B ( k , r ) = ~ [ - ~ l r - - e - 1 2 ' k r  ] • (21) 

Since V E Ll(1,oo),  clearly we have IIB(k,r)ll E L!(1,oo) and an elementary theorem in ordinary differential 
equations states that in this case O(k,r) has a limit O+(k) as r ~ oo. Further, for any compact set S C (0, co), 
su~ lIB (k,r)ll is, by inspection, L~(1,oo), and this allows us to obtain a bound of the type [4]: 

IlO(k,r)ll <~ Mk  E S, r 6 (1,oo). (22) 

We now rewrite (19) as 

6(k ,r )  = E(k,r)O+(k) + E(k,r)(O(k,r) - O+(k)) 

=-- E(k,r)O+(k) + Rl(k ,r) .  (23) 

This equation displays the fact that 4~ (k,r) asymptotically approaches a linear combination of plane waves. We 
also have the useful formula for the remainder: 

Rl(k ,r )  = E(k,r)(O(k,r) - O+(k)) 

f~B (k,s)O (k,s)ds = - E ( k , r )  fo  ~ Xr (s)B (k,s)O (k,s)ds, (24) 

I l  s ~ ~I • Zhe remainder R (k,~) for l~(k.~') is, of course, just the top entry of Rl (k,~'), which where Xr(s) = s < 

we denote P+Rl(k,r).  This function, as given by (24), can now be inserted into (14), where in (14) the norm 
is the norm in L2(1,~) .  As in the previous analysis in three dimensions, we reverse the integrations over s 
and k and bring the L 2 norm inside the s-integral to get the following estimate for the norm in (14): 
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I ;  1 
Suppose we can show that the norm in (25) is bounded as a function of s and approaches zero as t ~ _+co for 
each fixed s. The n, since w E Ll(1,oo),  the expression (25) will approach zero as t ~ _+oo by Lebesgue's  
dominated convergence theorem, and we will be done. Now, by the form of E(k,r) ,  the integral over k in (25) 
is a sum of two terms h+_ (r,s,t) having the form 

h± (r,s,t) = f s  e +-ikr-ik2tJ+- (k,s)dk, (26) 

where S is the compact support of ~ in (0, oo), and j± (k,s) is g--~)-- times a linear combination of products o f  

entries of 0 (k,s) with e -+2iks, 1, and k. We note that, by Plancherel's theorem on L2(R),  

IIh+_ (r,s,t)ll L2((o,~),dr) <llh_+ (r,s,t) JJL2(r,d,) 

= 2~" IIj± (k,s)llL2(~%ak) <~ const, 

where the last inequality follows from the form of j+_ (k,s) and (22). Also, for each fixed s, h+_ (r,s,t) is a solu- 
tion of the free Schr6dinger equation on L2(R)  and, as is well-known the integral of the square of such a solu- 
tion over a bounded set approaches zero as t ---' +co.  Thus,  

2 = yo s [h+(r,s,t)12dr -" O, (28) I IXr(S) h± (r,s,t) llL2((o,.),ar) _ t - ± -  

and we are done. The reader will, of  course, recognize that this proof is identical in conception to the earilier 
proof suggested in three dimensions, the point being that in the present case the "technicalities" are trivial, 
whereas before they were formidable. 

Now we take up a case in which Vdoes not belong to L l, but has an oscillatory behavior. For concrete- 
ness, we assume that V is the VON NEUMANN-WlGNER potential [12], whose specific form will not be 
important in our argument. The only information we need is that this potential is bounded on (0,oo) and has 
the following asymptotic form for large r. 

V(r) = -  gsin2..__._~r + O [ 1 ] , r _  co. (29) 
r 

Again, we wish to verify (14), and we make the same analysis of (15) as given above. We note that now 

w ( r ) =  1(1+1)  + r 2  V(r) 8sin2r+r 0 1 ~ ] ,  r ~ c o .  (30) 

Equation (30) shows that B(k,r)  of (21) is no longer in Ll(1,oo),  so that our previous proof does not apply. 
However, a little elementary calculus shows that if k ~ 1 then B(k,r)  is conditionally integrable over (1, oo). 
Further, setting 

H(k,r)  = y ~  B(k,s)ds, k ~ 1, (31) 

we have IlH(k,r)ll = 0 ( l / r )  for large r, so that 

IIn(k,r)B(k,r)l l  E Ll(1, c~), k ~ 1. (32) 

Condition (32) is enough to show that, for k ;~ 1, O(k,r) has a limit as r ~ oo. [4]. Briefly,  the reason is this: 
setting 

x(k ,r )  = (I + H(k,r))O(k,r) ,  (33) 

we have 

x'(k,r)  ~ (I + H(k,r)) 'O(k,r) + (I + H(k,r))O'(k,r) 

= H(k , r )B  (k,r)O(k,r). (34) 

Now, as just remarked, H(k,r)  ~ 0, so for large enough r, (say r >/ R), I + H(k,r)  is invertible and (34) 
r ~  

can be rewritten 

x'(k,r)  = H ( k , r ) B ( k , r ) ( l  + H(k , r ) ) - l x (k , r )  

_~ C(k ,r )x(k ,r  ). (35) 

Now for large enough R, IICII E LI(R, oo), since IlCII ~< const IIHBII C LI(R, oo). But then (35) implies that 
x(k ,r )  has a limit as r ---* oo and, hence, so does O(k,r), by (33). In fact, O(k,r) has the same limit as x(k , r )  
(see (33)). Setting 
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O+(k) = lim O(k,r), (36) 
r ~  

we have 

O(k,r) = O+ (k ) + (O(k,r) - O+ (k) ) 

= O+(k) + (x(k,r) O+(k)) + (O(k,r) - x(k,r))  

= O+(k) - f r  = C(k,s)x(k,s)ds H(k,r)  O(k,r) (37) 

Multiplying (37) by E(k,r),  we find 

&(k,r) =E(k,r)  O(k,r) = E(k,r) O+(k) + Rl(k,r) ,  k ~ 1. (38) 

In (38), Rl(k,r)  consists of two terms. The first involves an integral containing the function C(k,s), whose 
norm is in L I ( R , ~ ) .  This is of the type dealt with in our previous analysis for V E Ll(1,~o). In the present 
case we interpret the norm in (14) to be the norm in L2(R ,~ )  and proceed as before. The only refinement is 
that one chooses ~ (k) to vanish in a neighborhood of the point k = 1, to avoid the diffÉculty there. The 
second term in Rl(k ,r)  is easily shown to be 0( l / r )  uniformly in k on the support S of ~. This permits the 
estimate (recall P+ projects out the top entry) 

f s  e+{E(k,r)H(k,r)O(k,r)}e_ik2t~(k)d k <~ const (39) 
r 

Since c°ns-----Lt is a fixed function in L2(R, oo) and the left-hand side of (39) approaches zero for fixed r when 
r 

t --* +co by the Riemann-Lebesgue lemma, Lebesgue's dominated convergence theorem shows that the 
L2(R, oo) norm of the left-hand side of (39) approaches zero as t ---' +0% finishing the argument. 

By successive refinements, this method can be used to prove existence of the M~bller wave operators and 

hsin/zx~ where ~, and p~ are real, and a and weak asymptotic completeness for a class of potentials of the type x~ , 

/3 are positive numbers satisfying a + fl > 1,fl > 1/2 [1]. (For other conditions on ,~ and fl and stronger 
results on asymptotic completeness, see [2].) 

A side benefit of the above analysis is that it is not difficult to show that O+(k) ~ 0 unless 4~(k,r) =-- 0, so 
that a nontrivial plane-wave asymptotic form is established for all solutions of (15), except when k = 1. This, in 
turn, precludes the possibility of a square-integrable solution except for k = l  and, hence, a positive-energy 
bound state cannot occur except for E = k 2 = 1. As is well-known, the von Neumann-Wigner potential does 
have a positive-energy bound state with E = 1. 

In summary, the method of Green and Lanford consists, modulo a few tecnicalities, in estimating the rate 
at which solutions of the radial Schr'6dinger equation achieve their asymptotic forms as r --" oo. At first glance, 
the method may seem as bit more "cluttered" than some other methods available, but in certain instances the 
method is subtler and gives more information. 
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INTRODUCTION 

In this paper, we announce results which appear to us to found a new theoretical approach to nonrelativis- 
tic multichannel quantum scattering problems. The approach has the calculational flexibility of the resonating- 
group method, yet preserves the mathematical rigor of formulations based on integral-equation techniques. 

The time-dependent two-Hilbert-space formulation of the scattering theory is first reviewed and the transi- 
tion to time-independent theory made (Secs. 1-6). Dynamical equations for the transition operator Tare then 
written down (Sec. 7). In these equations the cluster-(or channel-) projection operators are incorporated into 
the transition operator, a feature characteristic of our two-Hilbert-space~formulation. The next step (Sec. 8) is 
the introduction of a new system of N-body equations, which we call M-operator equations. These equations 
have a unique solution and are strongly approximation-solvable. The theory of strong approximation-solvability 
(Sec. 9) with projection type approximations leads to the conclusion that the T- and M-operator equations are 
also stable. There are other advantages of our equations, when compared (Sec. 10) with, for example, the 
Faddeev-Yakubovskii equations, that are especially apparent when the number  of particles is large but the 
number of interesting channels is small. Still another advantage is provided by the fact that the solutions to the 
approximate equations can be related to approximate scattering systems (Sec. 11). This permits insight into the 
faithfulness with which the approximations represent the physics of the scattering process. The basic develop- 
ment  is then brought to a close with a discussion (Secs. 12 and 13) of how to include effects of particle indis- 
tinguishability and of Coulomb interactions. 

There remains the question of how to implement the basic ideas of the theory of approximation- 
solvability. Examples are presented (Sec. 14) and interesting features discussed. Among the most interesting 
aspects of these particular approximation schemes is that the approximate scattering operators are all unitary 
(Secs. 14 and 15). 

Throughout this paper we quote theorems without proofs. These proofs will be published elsewhere. 

1. NOTATION 

In this paper, we adopt the terminology and notation of [12]. Somewhat different terminologies can be 
found in [2,.49, 50]. 

Consider first a scattering process of N >~ 2 nonrelativistic, spinless, distinguishable particles interacting 
via short-range pair potentials. Asymptotically, the particles cluster themselves into fragments each of which is 
in a specific quantum mechanical bound state. Denote the different possible incoming and outgoing clusterings 
of fragments of the N particles by A, B, C, . . . .  Let O denote the clustering into N fragments, and let N 
denote the clustering into one fragment. A channel is a specification of a clustering and a bound state for each 
fragment. Let c~, /3, y . . . .  denote different channels. If channel a has clustering A ,  we write a E A .  
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The total Hamiltonian of the system (with the center of mass motion removed) is the self-adjoint operator 
HN with domain D ( H  N) dense in the Hilbert space 3~N -- L2(Fx3N-3) - Each clustering A determines an exter- 
nal potential VA , which is the sum of interactions between particles in different fragments, and a cluster Hamil- 
tonian H A (see [2, 12, 33, 50] ). Then H N = H a + VA for every clustering A. 

Let RN(z)  =-- (z - Hu) 1,RA(2) ~ (z -- H A) 1, and Ro(z )  ~ (z - Ho) -1 denote the resolvents of the 
/ " 

respective Hamiltonians. 

2. CLUSTER SUBSPACES AND PA OPERATORS 

Each channel ~ E A determines a channel subspace g¢', c XN which is the closed linear span of vectors of 
the form 

~ = ~c~(PA) @ f (qA) .  (1) 

The ~,~ are products of the bound state wave functions of the fragments considered as functions of the internal 
momentum space coordinates PA. The function f (qA)  belongs to the space L2(F, 3"A 3) of functions of external 
momentum space coordinates qA. n A is the number of fragments in clustering A. Define channel projection 
operators P~ to be the orthogonal projections of aS,°N onto a ~  . 

Define cluster subspaces ~ C XN to be the closed linear span of all the Hilbert spaces ,~,, for which a 
A. Define cluster projection operators PA = Pa@ I ° to be the orthogonal projection of XN onto ~A for all A , 
i.e., for 4a = 4~(PA,qA) ~ 0~"~¢ , 

e~ = Ze~ = Z~o(4o,~). (2) 
c~EA c~EA 

The integration in the inner product (~, 4~) in (2) is with respect to the internal variablcs PA only. 

3. ASYMPTOTIC (DIRECT SUM) SPACE AND HAMILTONIAN 

In order to keep track of all clusterings simultaneously, define the asymptotic Hilbert space 

~ =- ~ a a~gA ( 31Pa = P A XN ) . (3) 

Define the asymptotic ("free") Hamiltonian H b y  

H~P ----- ~A HA~A, (4) 

for4P=q)A,;b A ~ ~ewith~hA E D ( ~ ) ,  the domain of HA . Le tR(z )  = ( z - H )  1. 

We use the notational convention that all operators with a subscript map (a subspace of) a~,v into 3g'N. 
Operators without a subscript have domain and/or range in a direct sum space. 

4. INJECTION OPERATORS J AND J* 

Communication between the Hilbert spaces ~ a n d  ff~N is provided by the injection operator J : ~  ~N 
defined by 

A 

Then J*:fg' N ~ X i s  given by 

J*qj = @ aPatO. 

Lemma 1 [11,12]. (i) J maps D ( H )  into D(HN).  

bounded inverse on ~N.  

(5) 

(ii) J* maps D(HN) into D ( H ) .  

(6) 

(iii) J J* = ]~ Pa has a 
A 

5. ASSUMPTIONS 

Define potential operators V:D (V) D D (H)  ~ ~ N  by 

V =  H N J -  JH, 

and V*:D(V*) D D ( H N ) ~ b y  

(7) 
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V* =-- J*H~v- HJ*. (8) 

We assume that Vand V* satisfy the following conditions. 

Assumpt ions .  (A1) For every positive e and e*, there exist finite constants b and b* such that 

[[Vqb[[ ~< ellHqbll + b l l~ l l  (for every (b E D ( H ) )  

and 

IIv*~,[I ~< E*IIHNq, ll + b*ll~ll (for every qJ E D(HN)).  

(9) 

(lO) 

(A2) The two-Hilbert-space wave operators 1)±: X ~  a ~  defined by 

1) ± ~- s - l i m  eiHNtJe -iHt 

exist. 

(11) 

Remark 1. (a) Assumptions (A1) and (A2) are true if, for example, the pair potentials Vii satisfy [12] 

V(i E L2(R 3) + LP(~ 3) for some 2 ~< p < 3. (12) 

(b) The idea of using two-Hilbert-space wave operators for quantum mechanical scattering was originally due 
to EKSTEIN [23]. They have been pioneered by COESTER for relativistic scattering [16-18] and by HUN- 
ZIKER for nonrelativistic scattering with singular potentials [34]. Two-Hilbert-space wave operators have also 
been used extensively in acoustical and electromagnetic scattering by KATO [38], BELOPOL'SKII and BIR- 
MAN [3], WILCOX [59], and DELFT [20], et al. 

6. TRANSITION TO TIME INDEPENDENT THEORY 

A full system scattering operator S : ~ ' ~ a ~  is defined by 

S==.fl + *1) . (13) 

Theorem 1 [11 - 13]. S - l i s g i v e n  on ~t~by 

S - I = w-lira s - l i m ( - 2 ~ r i ) f  f dE (t~ )8 ,l ( h -  ~) T(),+ie2)dE(h), (14) 

where 

8~(x) =- ~--(x 2 + e 2) l, x real, (15) 
qr 

and where T(z):D (H) ~ ~t' is defined by 

T(z)  = J*V + V*Ru(z) II, (16) 

for z in p(HN) , the resolvent set Of HN. 

The full  system transition operator T(z)  given in (16) is the "prior" form. "Post" and "AGS" forms are 
also possible [12,13]. The restrictions of T which map ~g'A into g e  are called the cluster matrix elements of T 
and are denoted by TeA (z). Then 

TeA (z) = PB UsA (z)PA, (17) 

where 

UBA (z) =- -VA + PeRu(z)VA (18) 

is the usual prior form of the transition operator [12]. 

The next step is the derivation of some solvable equations for the UBA or TBa operators, or for some 
intermediate operators such as FADDEEV's  M~A operators (or our MBA operators in See. 8 below). 

The present N-body equations are of two basic types. The first consists of those equations which iterate 
through FADDEEV's  "trees" [25] and incorporate the exact solution of all N-1 fragment subproblems into the 
kernel of the N body equations [1, 10, 24-26, 29, 36, 45, 57, 60]. The second consists of those equations 
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which have almost all of the branches of the trees in the kernel (or some iterate of the kernel) [4, 9, 28, 39, 
44, 48, 49, 51, 53, 54, 56, 58]. These equations determine unknown operators which act on the full N-body 
space a~t'N . The kernel (or some iterate of the kernel) is made connected (and compact) by forming compli- 
cated products of operators. 

What we do here is very different from these previous methods. The PA operators are incorporated into 
the unknowns of the equations and connectedness (and compactness) of the kernel is obtained by modifying 
the space gO', or, equivalently, by modifying the Pa operators. This new option is greatly facilitated by our 
two-Hilbert-space methods. It allows us to "trim the trees", i.e. we can approximate the problem by omiting 
some of the branches of the trees, or by limiting the diameter of the branches by restricting the space ~ .  
Then, by using better and better approximations, we can watch the trees grow to full size. 

7. T-OPERATOR EQUATIONS 

Theorem 2 [12]. DefineL r= Lr(z)  =- I -  V*(JJ*) ~JR(z). I f z  E P(HN) and~  C D ( H ) c g t  ~, thendP = T ~  
is the unique solution in gg'of the equation 

L rcb = J*Vq~, (19) 

i.e., TsA = TsA (z) are the unique solutions of the system of equations 

TsA = PB-VAPA + PsPB(JJ*)-I~. RcPcTcA. (20) 
c 

Because of the Pc operators, the resolvents Rc(z) are simple, i.e., "free" resolvents on the spaces 
L2(lq 3nc-3). 

There are two major objections to (19) and (20). The first is that the operator (JJ*) 1 appears in the ker- 
nel. The second is that the kernel is not, in general, compact. The first objection can be removed (Sec. 8) by 
reformulating the theory in terms of a new operator M. The basic equations for M, which are new N-body 
equations, do not contain ( j j , ) - l .  The second objection is overcome (Sec. 9) by using a more general theory 
of equations that does not always require the kernel to be compact. 

8. M-OPERATOR EQUATIONS 

Define the operator M(z) :D(H)  ~ ~ by 

M(z)  =-- (z--H)J*(JJ*)-lRN(Z) V. (21) 

The cluster matrix elements of M(z)  are 

M~A (z) = P s ( z - H s )  (JJ*)-I RN(z) VA Pa. (22) 

Note that the cluster projection operators are incorporated into the definition of the operators MsA, and, hence, 
MBA = P~MBAp ~. 

Theorem 3 (Existence). The operator M = M(z)  is, for z E P(HN), a solution of the equation 

( J * J -  J*VR)M = J*V. (23) 

That is, the operators MsA (z) are solutions of the system of equations 

~'~ PS(IN -- PcRc)PcMcA = PBPaPA" (24) 
C 

Remark 2. In order to prove that (23) has a unique solution, we must restrict the solution space. This does 
not present a problem;however, because the exact solution is in the restricted space. Moreover, the restriction 
is automatically enforced when T(z) or RN(z) is calculated from M. 

Now define P to be the orthogonal projection of Xonto  J¢'=-- R (J*) , the closure of the range of J*. For 
a fixed zEP(HN) , let . ~=  .~(z) = (z -- H)PR(z)a~.. Then .@is a linear vector space. For cb ,~E~ ,  define 
the inner product (~, ' , I r) ,  = (PR (z)qb,PR (z)'tt). Finally, define the Hilbert space ,// 'to be the completion of 
-@under the inner product (., .) ~. 



Theorem 4 (Uniqueness). Define 
then the equation 

L M09 = J*V'q" 

has a unique solution d9 = M q '  in ./.{. 

Corollary 4.1. Suppose that M = M ( z )  is 
Then X = T and Y = RNJ. 
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L M =  L M ( z )  - -  J*J - J*VR.  

a solution 

I f  z 6 P(HN)  and • 6 D ( H )  C a~l', 

(25) 

o f  (23). Let  X =-- R - 1 J * J R M  and Y - -  JR + J R M R .  

Remark 3. (a) The operator ( j j , ) - i  does not arise in our M-operator equations. 

(b) No mention of the space ~t' is needed in Corollary 4.1, because the operator JR in J R M  annihilates any 
component of M which is not in J( .  

(c) The formula R u J  = JR + J R M R ,  i.e., 

RNP~ = RAPA + ~ R s P s M B A P A R A ,  (26) 
B 

is of the type encountered in the "limiting-absorption principle" [30-32]. This strongly suggests that M is the 
proper operator to be studying. 

9. APPROXIMATION-SOLVABILITY 

In this section the T- and M-operator equations are placed within the context of the theory of A-proper 
operators and strong approximation-solvability. This theory has been reviewed by PETRYSHYN [47]. It sub- 
sumes Fredholm theory, Galerkin methods, monotone operator theory, ball condensing operator theory, and 
others. 

Assumption (17). The operator 17I = ~AII~: ~ t ' ~  ge has the properties 

(a) H is an orthogonal projection operator, 

(b) [II ,H] = 0 ,  

(c) (J I IJ*)  -1 exists and is bounded on ~(JI-I)  , the closure of the range of JII.  

Definition. F = {fig'("), JY'('),II("),Q} is called a suitable approximation scheme for an operator L: .~ ~ Y if 
{II ~")} is a sequence of operators satisfying Assumption (17) such that H(")09 ~ 09 for each 09 6 ~[~, 
~<") -- II<"));¢ ', ,£'(") -- II(")X, and Q is a bounded operator from ~' into .~. 

Remark 4. Our definition of a suitable approximation scheme differs from PETRYS.HYN's definition [47] of 
an admissible approximation scheme in two respects. First, for theoretical purposes we do not always assume 
that ~(")  and yi,,) are finite dimensional. Second, our Assumptions (lib) and (IIc) do not play a role in [47]. 

Definition. For a given • 6 X ,  the equation L09 = W is said to be strongly approximation-solvable with respect 
to a suitable approximation scheme F if there is an integer n o /> 1 such that the approximate equation 

II(")LQII( ' )09 (") = II(")q ~ (27) 

has a solution (I,(")6 a~ (") for each n >/ n o such that QII(")09 (")~ 09 for some 09 6 .~ with L09 = • . 

Let P(") denote the orthogonal projection onto the closure of the range of JI I (" )J  ~" = ~ 17(") , for every 
A 

n. We define approximate totalHamiltonians H }  ") on D ( H  ( ' ) )  C ~"(") ---- Pn (') XN by 

D ( . )  t-r D ( n )  H(")  :---- - a  "'N--n , (28) 

and let R(N")(z) =- (z - HN(")) -1. 

Define Q r =  Qr(z ) - (z - H ) J * J R  (z)  and Q M =  QM(z ) =_ (z -- H ) P R  (z ) .  Then 

L(,,) :_ I I ( , ) j * ( z  _ H(N,))JRII( , )  

= 17(")L r QT 17(,,) = ii(.) L MQM if(n) (29) 
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Suppose that Assumptions (A1), (A2), and (II) are satisfied. 

Theorem 5. 

Theorem 6. 
H (') -~1. 

Theorem 7. 

Then we have the following theorems. 

The operators H~ ") are self-adjoint. 

The operator H~ is the strong resolvent limit of  H,~, "~, i.e., for all z with Im z;~O,R~")(z) -~Ru(z)  as 

(i) The T-operator equation (19) is strongly approximation-solvable with respect to F r ~ {~{'(,,) X(,) ,  
II (''~, O r} for each • ~ D(H) .  

(ii) The M-operator equation (25) is strongly approximation-solvable with respect to FM ~ {a~ ~'), J ( " ) ,  
II ~'), Q~} for each • ~ D (H).  

In either case (i) or (ii), the associated approximate equation is 

L(,,)~(,,) = II( , ,) j*V~, (30) 

with W 6 D ( H )  and 6p(")= M(")W 6 a~ ('~). Therefore, the cluster matrix elements M ~  ) = M~) (z ) :  
D ( H )  ~ ,~(") are solutions of the system of approximate M-equations 

Z n~(")(Lv - P'cRc)II(")M~ ) = rI~")V~PA" (31) 
C 

Condition (F). There exist c o > 0 and no >/ 1 such that the suitable approximation scheme F satisfies 
IlJrI(")J*~ll >/c01[~[I f o r a l l 0  E ~'~") andall  n >/- n~. 

Corollary 7.1. I f  Condition (F) is also satisfied, then the operators L T and L M are Petryshyn A-proper and one-to- 
o n e ,  

Remark 5. (a) Condition (F) is our analog of the Condition (A) in the Petrov-Galerkin method (see [47]). 

(b) The approximate M-equation (30) has a unique solution on the subspace (z -H)II (")J*D(HN) of ,~("!. 
Any solution 4) TM E aft(('), however, uniquely determines the approximate transition operator T(")(z) by 
T("l(z)q~ -: FI(") QT(z)~  ~') and the approximate resolvent operator R~"l(z).  

(c) Theorem 7 removes the need to obtain equations with L = 1 - C, C a compact operator. The main pur- 
pose of having equations with such kernels is to take advantage of the Fredholm alternative. But Theorem 7 
together with our uniqueness Theorem 2 or 4, accomplish the same goals. 

Theorem 8 (Stability). Suppose that Assumptions (A1), (A2), and (I71) are satisfied, and let Q denote either Qr or 
QM. Then the projective approximation method given in (30) is stable in the sense that there exist positive constants 
ci,c 2 (independent of  n and qr) such that the perturbed equation 

(L ~'~ + II(")F("IQII("))O(") = II(")J*V~ + ~(") (32) 

has a solution ®(") E o~ '~'~ for n >/ no such that 

(i) QII("IO ~'~ ~ ~ c J,( is uniquely determined, and 

(ii) the inequality 

IlOrl(")(~ ~'>- 0<"))11~ ~< e~ll~<")llllF(")ll + c111~(")11 (33) 
holds, where' F('~):,,¢( ~ ~/" is a bounded linear operator perturbation satisfying [IF<")II ~< c2, and ~(") is an arbi- 
trary vector in II("l.~.. 

10. COMPARISON WITH FADDEEV-YAKUBOVSKII EQUATIONS 

We digress to compare our M-equations with the FADDEEV-YAKUBOVSKII (FY) equations [26,60]. 
Similar comparisons with other N-body equations may also be made, but, in the interest of brevity, we shall not 
make them here. 
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The Faddeev equations for N ~ 3 are 

MFA = 8 BA TA + TBRo]~ "~BcMFA (34) 
C 

where 8BA is the kronecker delta, ~sa = 1 - 8SA , and TA are the two-fragment transition operators in the 
three-body space, Because of their complexity, we shall not write down the Yakubovskii equations for N > 3. 

We put our equation LMM = J*Vinto a form similar to (34) by rewriting it as 

M = J*V + (1 - LM)M (35) 

and taking cluster matrix elements to obtain 

MsA = PBPAPA + ~, Ps (PcRc  - -gcB)PcMcA. (36) 
C 

We emphasize that (36) is an N-body equation for any N >/ 2. 

Table I contains a comparison of the properties of the equations. We remark that the 3-body Faddeev 
equations are known to be stable under certain conditions [61], but, to our knowledge, no approximation 
method such as pole approximation has been proved to be stable. 

In Tables II and III, we compare the number  of coupled FY equations with the number  of equations in 
the system (36) for N distinguishable particles and for N identical particles. The numbers  in the tables are 
from BENCZE [5]. The rows in Tables II and III labeled CG < E 3 refer to the number  of equations in the 
system (36) if only the two-fragment clusterings are included. This is not expected to be a good approximation. 
Nevertheless, in calculations below the three-fragment threshold E3, we expect that the number  of additional 
equations required to represent the important virtual breakup states is small. The number  of equations needed 
for a more realistic approximation is, therefore, not much larger than the number  given in the tables for 
CG < Z 3. 

TABLE I 

Comparison of Properties of the Faddeev-Yakubovskii Equation 
with the Chandler-Gibson Equations. 

PROPERTY FY CG 

Unique solution 

Compact kernel (with 
additional potential 
assumptions) 

Simple kernel 

Nonhomogeneous  term 

Reduces to Lippmann- 
Schwinger equation when 
N = 2  

Approximation method 

Unique solution of 
approximate equations 

Stability of approxi- 
mation method 

Unitarity of approxi- 
mate S (") Operators 

Convergence of 
approximate S (n) 
operators to exact 
S operator 

Yes 

Yes (after iteration) 

Yes (if T a are known) 

TA 

Not directly 

Pole approximation (and 
others) 

Not always [40] 

Yes (Theorem 4) 

No for exact equation (but A- 
proper!) 

Yes for approximate equations 
(without iteration) 

Yes 

Born approximation 

Yes 

Projection methods 

Not always (but T(")(z) 
are always unique) 

Yes (Theorem 8) 

Yes (Theorems 15 and 16) 

Yes (Theorem 10) 
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TABLE II 

Number  of Equations for N Distinguishable Particles 

Approach~'-.N 3 4 6 8 

FY 

CG exact 

CG < ~'3 

3 18 2,700 1,587,600 

4 14 202 4,139 

3 7 31 127 

TABLE III 

Number of Equations for N Identical Particles 

Approach"~N 3 4 6 8 

FY 

CG exact 

CG < ~3 

1 2 11 116 

2 4 10 21 

1 2 3 4 

Table IV contains a comparison of the dimension of the integrals arising in the FY and CG equations. 
The last line refers to the approximation method outlined in Sec. 14. 

TABLE IV 

Dimension of Integration Space 

A p p r o a c h " ~  3 4 6 8 N 

FY L 2 (~6) L 2 (~3N-3) 

CG exact 

CG < E 3 

CG approx. 

method 

L 2 (R 9) L 2 (R 15) L 2 (R 21) 

Varies from L 2 (R 3) to L2(R 3N 3) 

L 2 (jR3) L 2 (R3) L 2 (R3) L 2 (R3) L 2 (R3) 

L 2 (R) L 2 (R) L 2 (~ )  L 2 (R) L 2 (R) 

11. INTERPRETATION OF THE APPROXIMATE SOLUTIONS 

Any solution M ( n ) ( z ) : D ( H )  C a~- - '  $~'(") to the approximate equation 

L (n)M(") = II(")J*V (37) 

can be interpreted in terms of an approximate scattering system. 

Theorem 9. Assume that V,V*, and II (~) are such that Assumptions (A1) and (II) are satisfied. Suppose further 
that there is a set E (n) , dense in ~ ,  such that for  each qb ~ E (~) 

f~ IlvrI(")e-iH~l'llds < ~ .  (38)  
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Then the wave operators 

f~(n)±~ s-lim eiH~"l~Jrl(n)e-iHt 

exist, and the scattering operator 

S (~) =-- 1~ (n)+'12 (n)- 

is given on aqg '(n) by 

S (°) - II (") = w-lira s-lim (-2=i)ffdE(~)8,,(x - ~ ) T ( ° ) ( x  + i¢2)II(")dE(h).  
EI~0+ e2~0+ 

Here, 8, is as in (15) and 

T(.)(z)II(,,) = II(.){J* V + V*R~")P~ ") V}H 0'). 

The operator T (") (z) is related to M (") (z) by 

T( . ) ( z )  = I I ( . ) Q r ( z ) M ( . ) ( z ) .  

(39) 

(4O) 

(41) 

(42) 

(43) 

The approximate scattering system corresponding, to MCn)(z) thus has the approximate total Hamiltonian 
HN ("), the approximate N-particle space #g'~") = p~n)SeN, and the approximate asymptotic space Se("). Within 
this framework, the relation on Se(,/ of M ~ ) ( z )  to the approximate scattering operator S (") is formally the 
same as the relation on X of the'exact M ( z )  to the exact scattering operator S. 

There are two important consequences of this correspondence between M(n)(z )  and an approximate 
scattering system. First, the formal structure of the exact theory is preserved so that certain features of the 
exact system, such as symmetries and unitarity, can be incorporated into the approximate theory in a manifest 
way. Second, one is led to expect that T(n)(z) will be a good approximation to the exact T(z )  when ~¢N (n) con- 
tains all the states, both real and virtual, that are physically important for the process being considered. A priori 
physical arguments may thus be used to choose the projection operator II (n) that yields an accurate approxima- 
tion T(")(z)  to the exact T(z ) .  

It is also true that the sequence of approximate wave operators 12(~)-+ converges strongly to the exact 
wave operator 12 ±. 

Theorem 10. Let F r be a suitable approximation scheme for L r, and let the assumptions o f  Theorem 9 hold with 
E (n) being independent o fn .  Then the wave operators ~ ± exist on ~,, 

f~ ± = s-lim fl (n)÷, (44) 
n ~  

and 

S = w-lira S (~). (45) 

This convergence of the approximate scattering operators to the exact one is, so far as we know, the only 
such result that has been rigorously proved for general N-body systems. 

12. SYSTEMS CONTAINING IDENTICAL PARTICLES 

For practical applications, it is important that projectionally suitable approximation schemes are compatible 
with the symmetry requirements that are placed on the theory when some of the particles are identical. 

Let 5 '~ be the group of permutations A s that interchange identical particles. The Young symmetrizer for S a 
is given by 

A N ---- 15a[ -1 ~ fsAs,  (46) 
As~ 

where [SP[ is the number of permutations in 5(,, and where fs is - 1  if A s involves an odd permutation of fer- 
talons and is + 1 otherwise. The space of physically acceptable states is then A N $1¢N. 

The projection operator AN induces an equivalent symmetrizing projection operator QtZJ on St'. 
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Theorem 11 [8]. There exists an orthogonal projection operator Q(g) on ~' such that 

ANJ = JQt~) (47) 

and 

[Q(~'),H] = 0. (48) 

The proof is constructive and exhibits the specific form of Q(~). 

The appropriately symmetrized scattering theory for systems with identical Particles is thus obtained as 
follows. Construct the theory as if the particles were distinguishable. Then replace ~ r  by A~l'N,gflby Q(~'~r,' 
and J by jQ¢S,) . The resulting theory is the correct one. 

It follows that the abstract structure of the scattering theory for systems with identical particles is the 
same as that for systems of distinguishable particles. The projection operators II of the approximation theory 
must  then be projection operators on Q¢~)$t', which is equivalent to the requirement that 

[II,Q ~s¢)] = 0. (49) 

That this is not a restrictive requirement is clear from the detailed considerations of [8]. With the addition of 
(49) to Assumption (H) all of the previous considerations of approximation-solvability apply without change to 
systems with identical particles. 

13. COULOMB INTERACTIONS 

The formalism can include the long-range effects of repulsive Coulomb interactions [14]. The proof of 
this is based on the results of DOLLARD [22] and on the use of the chain rule [6, 7, 38]. 

When Coulomb interactions are present the cluster wave operators II,~± for a given clustering A have the 
form [22], 

f~,~:~ --: s-lira eiHNtpAe-iHAtu,~(t). (50) 
t ~ ± ~  

The projection operator PA has the form given by (2) and the operator UA (t) is unitary. 

Define now 

H,~ --~ HA + V~, (51) 

where V~ is the Coulomb interaction that would take place between the fragments of A, were the fragments to 
be point particles. The wave operators 

PA + = s-lim eiY~tP,4e-iHAtUA(t) (52) 
t ~ ± ~  

can then be shown to exist by methods of DOLLARD [22]. The important structure Of P f  is indicated by 

e ~  = P~ ® ,o~, (53) 

where oJ~ are the wave operators corresponding to the pure Coulomb scattering of the fragments in A with the 
internal structure of the fragments being ignored. The operators P ~  have the intertwining property [21] 

H~P~D P~HA, (54) 

with the result that lqJ ± can be written in the form 
iHNt + --iHAt 

f l J  ± = s-lira e P~e  . (55) 
t ~ ± ~  

New injection operators J± :"$"N ~ a$~ are now defined for all ~ E ~ b y  

J-+qb = J±~,~cbA : -  ~'.PA+~bA. (56) 
A 

With this notation, the cluster wave operators fl J± can be combined into two-Hilbert-space wave operators 

fl c:~ ----- s-lira eiHNtJ±e-int (57) 
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that have the same abstract structure as (11). 

It is now necessary to assume: 

Assumption (oD. The wave operators oJf exist and are unitary. 

This assumption seems reasonable if the Coulomb forces are all repulsive, as is the case in nuclear phy- 
sics. Even in that case, however, it has not been proved for clusterings .4 with more than three fragments [21, 
41-43]. 

If Assumption (co) is satisfied, then Lemma 1 is also true for J-+. In addition, 

J = J+S c° (58) 

where S ~° is defined by 

SC°~ = Sc°~A¢~ ~ = ~ A P ~ * P ~ ¢  A. (59) 

The operator S c° is the pure Coulomb scattering operator that one would obtain if the internal structures of the 
fragments in the clusterings were ignored. 

One now has the following theorem, which is analogous to Theorem 1. 

Theorem 12. Let  Assumption (~o ) be satisfied and let SC ~ f~ c+ * f l  c-. Then S c -  S e° is given on a~ by 

S c -  S ~°= w-lim s-lim ( - 2 r i )  f f a E ( t z ) a , t ( X - l z ) T C ( k + i e 2 ) a E ( h ) ,  (60) 
el~0+ ~2~0+ 

where 8~ is defined in (15) and where 

TO(z) =-- J+*F-  + F+*RN(Z) F-, (61) 

F +- =-- H u J  +- - J ± H ,  (62) 

V ÷ * = J -  *HN -- H J  ± *. (63) 

The operator TO(z) can be expressed in terms of an operator M e ( z )  in an analogous fashion to the pro- 
cedure in the short-range case. Thus, 

TC(z) = R - I ( z ) J + * J + R  ( z ) M ~ ( z ) ,  (64) 

where MC(z) is the unique solution of the equation 

[J+*J+ - J + * V + R ] M  c =  J+*V  . (65) 

The strong approximation-solvability of (65) is now proved in the same way as is Theorem 7. The only change 
in the analysis is that the operator J + ,  instead of J, is to be used at every stage of the proof. 

Equation (65) can be written in terms of the cluster matrix elements M~A of M c. These equations are 

PB ( P D -  V~P~Ro)M[~A (66) +~ + --c + c +~--c  -- = PB V ~ P j ,  
D 

where 

V~ =-- H N -  H j  = H N -  H A -  VJ. (67) 

The major difference between (66) and the corresponding short-range equations (24) is the presence of 
the pure Coulomb wave operators oJ~ in (53). This represents a formidable complication in that the many-body 
Coulomb scattering functions must be known. Calculation of these for two or three fragment clusterings is 
known to be difficult, but possible in principle [21, 41-43]. For more than three fragments, no calculational 
method is known. 

The modifications needed to deal with the Coulomb interaction are compatible with those needed when 
some of the particles are identical. The operator U(t): aq~ '---~ oqg', defined for all <b E ,~  by 

U ( t ) ¢ ~  = U ( t ) ~ A ¢  a ~ ~ A U A ( t ) ~ A ,  (68) 
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satisfies the commutation relation [8] 

[U(t),Q t~J] = 0. (69) 

This leads in a straightforward way to the result 

ANJ +- ~ J+- Qf~}, (70) 

which, in turn, implies that the analysis of Sec. 12 can be applied. 

Finally, it is noteworthy that although the wave operators P~ were defined within the context of the 
Coulomb problem, a similar analysis can be applied to obtain a distorted-wave formalism in the short-range 
case. For that case, U.~(t) = 1 and the distorting Hamiltonian KA which replaces H~ is chosen to satisfy 
Assumption (to) and otherwise to give easily calculable to~. The operators P~ are then expansions, not in 
terms of Coulomb scattering functions, but in terms of distorted waves which are the scattering functions of 
KA. 

14. AN EXAMPLE 

We finally come to an example of how the projection operators H (") might be calculated [15]. 

For each channel a ,  operators p , j : ~ ,  ~ L2(R) are defined. Let PA denote the momentum variables 
internal to the fragments of A, a E A, and let qA denote the momentum variables of the fragments relative to 
each other. Let (a,(p A) denote the product of the bound state wave functions of the fragments of channel c~. 
Then the operator p~j is defined by 

(O,j@~)(X) =-- f dpA dqAS(h -- • ,  -- TA(qA))X*aj(qA)~*~(pA)qJa(pA,qA). (71) 

Here, % is the threshold energy of channel c~ and T A (qA) is the kinetic energy of relative motion of the frag- 
ments of channel a. The functions X,j are essentially arbitrary, but are assumed to satisfy three technical res- 
trictions. 

Assumption (X). The functions X,~/ E L2(I13hA-3) satisfy 

f dqA 8(X -- % -- T A (qA)X*~y(qA)x~k(qA) = ~jkO(h--E~), 
where 8]k is the Kronecker delta and O is the step function. The X~i also satisfy 

sup [T A (qA)](3n~-S)/2j(qA/lqA l)Ix~.](qA)12 < 0% 
qA 

where the Jacobian ) i s  defined by 

dqA = [TA (qA)] (3"~-5)/2J(qA/lqA I)dTAd(qA/lqA [). 

Finally, they have the property that for some • > 0 and m > 0 ,  

1 

]]P'Ae-JHAto*jf(m)]] <~ k.i(1 + t2)-7 - ' ,  

where k.j is some constant and 

f(m) (h) ~- (i--h)-m. 

(72) 

(73a) 

(73b) 

(74a) 

(74b) 

Equation (72) is a normalization condition and (74a) is essentially a smoothness condition. The inequal- 
ity in (74a) is exactly of the type commonly encountered in the Cook's theorem approach to the existence of 
the cluster wave operators l I ~  [2, 21, 50]. From those calculations, it is apparent that (74a) will be satisfied, 
provided the potentials have short-range and the functions X,] are at least three times continuously 
differentiable. 

It is to be emphasized that the functions X~/ play much the same role in this scheme as do the trial func- 
tions in variational calculations. They are to be provided at the onset of a given calculation by the theorists' 
ingenuity. It is here, in particular, that physical intuition and experience is to be injected into the calculation. 

As an example of how one might choose the functions X~j, consider a channel ct C A with two spin-zero 
fragments. Let q,~ E 1t. 3 be the relative momentum of the two fragments, and let P-A be the reduced mass of 
the two fragments. Then one could choose 
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X~i ~ (~A [qA I)-l/Z Yf (qJ lqA I), (75) 

where y m is some spherical harmonic with indices l,m depending on a,j.  

As a second example consider a channel a E A with three spinless fragments. Let qA (I) and qA (2) E N 3 be 
a pair of Jacobi coordinate vectors for the channel, and let /zj  1) and/zA (2) be the corresponding reduced masses. 
Then one might choose 

["A((l)lqJl)lf ,-=--'777[ {qA(1)[2 4- 1q~2) 12 IX{2 I}-'/2t" t~ (2)'~ vm¢. (I);{_(1) 
x,,j I), (76) 

where fj(qA (~)) ~ L2CN3), and the indicies /and m depend on a,j. 

The projection operators I1 (") are now to be defined for all ~ 6 ~ b y  
r a 

I I ( n ) d P  = I I ( n ) t ~ A ~ , 4  ::- (t),4 ~.# ~.# P*/P~,j¢~,. ( 7 7 )  

a ~ A  j = 1 

It is understood that the numbers r~ of trial functions X~j satisfy 

r~ < oo. (78) 

If r,~ = 0 then II (") annihilates functions from that channel. The important properties of the operators H (") are 
summarized in the following theorem. 

Theorem 13. Let the functions X~j satisfy Assumption (X). Then, the operators II (n) defined in 
(77) satisfy Assumption (II), and the operators 

C (") = II(")(J*J - 1)II (") (79) 

are Hilbert-Schmidt. 

If the functions X~j are chosen to form a basis on the energy ellipsoid for channel c~ , then as all the 
r~ --~oo , the projection operators II (n) tend monotonically to I, and the approximation scheme F defined by the 
11 (") is a suitable approximation scheme. It follows that the 13 (") defined by (77) provide an example of how 
the approximation-solvability ideas can be implemented in the theory of N-particle systems. 

The smoothness condition (74a) has extremely interesting further consequences. 

Theorem 14, Let Assumptions (..41) and (X) be satisfied. Let II (n) defined by (77) be such that the II (n) tend 
strongly to I as n ~ co. Then, 

(i) the assumptions of  Theorems 9 and 10 are satisfied, with E (n} being the set of functions qs = (BAtkA in ~t' 
with only a finite number of  t~ A nonzero and with tk A "being infinitely differentiable and of  compact support in the rela- 
tive momentum variables of  the fragments; and 

(//) VIIC")E(A) is trace class for all n and all finite intervals A C I i  . 

It follows that the discussion Of Sec. 11 can be applied to give an interpretation to the approximate equa- 
tion (30). It further follows from Theorem 14 (ii) and the Kato-Birman-Pearson trace class theory [20, 37, 46] 
that the wave operators fZ (,)-+ are asymptotically complete. From this comes the following important result. 

Theorem 15. Under the assumptions of  Theorem 14, the approximate scattering operators S (") are unitary on a~ (n). 

Finally, we write the approximate equation (30) in a more detailed form which makes its attractive 
features more apparent. The cluster matrix elements MB(,~ ) of M("~{ ~,~ have the form 

rB r a 

M~2= Z ~ IF., l~,o~jo~jM~2o3~po~. (80) 
[3 E B a E A .I=I k - 1  

Let 

Moy~k(k /z;z) ~ kernel (n) • of po/M~,~ p ~k, 

C~j,~k(X.,~) ----- kernel of (1 - 8~)O~jO*. k, 

Boj,~kOt,tD =- kernel of O~j VAp ~ .  

(81) 

(82) 

(83) 
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That the various operators are integral operators, and can hence be represented by kernels, follows from 
Theorems 13 and 14. Equation (30) then yields 

M ~ j , ~ k ( h , l ~ ; z ) = B , / , k ( h , l z ) +  Ef_~{ B~j''(x'~) - C,j~.(h~)}M~.~k(~lzz)d" O. (84) 
' y,n z - - ' 0  

This equation is an integral equation in one variable for a matrix-valued function. The driving terms are the 
overlap integrals C~j,~k and the Born approximations B~j,,k. 

We now recall the discussion of Secs. 12 and 13. Without altering the general form of (84), the effects of 
having identical particles and of having Coulomb interactions can be incorporated. Distorted waves other than 
those caused by Coulomb interactions can also be incorporated. In this latter case, the C~j,,~k are the overlap 
integrals of the distorted waves, and the B~/.~ k are the distorted-wave Born approximations. 

15. A RELATED RESULT 

Suppose the pair potentials V~j(x) satisfy 

Vij E L P ( ~  3) O Lq(~l~3),  

3 where p /> 2 and ~- > q i> 1. Define II = ~AHA by 

PA,A=2 - fragment clusterings, } 
HA = [0, otherwise. 

• Then the wave operators 

~ n ±  ~ s-lim eiPnHNPntJHe -ill1 
t ~ + ~  

exist. 

(85) 

(86) 

(87) 

Theorem 16 [55]. Assume that all subfragments of less than N particles can have only a finite number of  bound 
states. Then Ut n± are asymptotically complete ( f l n ± ~  l~± *= orthogonal projection onto the absolutely continuous 
subspace of  PnHNPn). 

This result of TRUCANO [55] differs from the previous results of COMBES [19] and SIMON [52] in that 
the approximate Hamiltonian PnHuPn appears, rather than H s itself. But the result is true for energies above 
the breakup threshold and the assumptions on the pair potentials are weaker. The proof is based on the tech- 
niques of [27, 31, 32] applied to a symmetrized version of (30), and is valid for an arbitrary number of parti- 
cles. 
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INTRODUCTION 

The purpose of this talk is to describe some mathematical methods which prove to be fruitful in the quan- 
tum many-body problem and, hopefully, are useful beyond the scope of this problem. Our discussion will be of 
a general character, and we will omit technical details and most of the proofs. 

As a starting point, it is useful to analyze key points of  the mathematical structure of the one-body prob- 
lem, H = Ho + V, where Ho = - A  and V f  = V ( x ) f ( x )  on L2( l~ ) ,  with V Ho-compact. 

(1) The spectral theory of H is reduced to the study of the operator V ( H  o -  z) - l .  Indeed, the compact- 
ness of V ( H o - z )  -1 for z C o ( H  o) gives information about the location of ~ress(H): ~r~ss(H) = ~(Ho) .  
(Mathematical notations are listed at the end of the Introduction.) The behavior of V ( H  o - z) -1, considered on 
some Banach space, near 0 = OO-~ss(H), the only possible accumulation point of  ~ra(H), indicates whether 
~ra(H) is finite. 

(2) In the time-independent approach, the abstract scattering theory of simple systems [35,36] reduces 
the scattering problem, i.e., the existence and completeness of the wave operators for the pair (H, 11o), to the 
limiting absorption principle, which in turn is reduced to the study of a behavior of the operator V ( H o - z )  -I on 
certain Banach spaces as z approaches o- (11o). 

(3) It is clear that the  choice of the Banach spaces for the study of V ( H o - z )  1 near ~r(H o) is crucial. A 
very important tool in this respect is the factorization of ld let V be factorizable as V = AB, where A and B are, 
in general, unbounded operators on L2(~Y) or bounded operators from a Hilbert space 3'{" into L2(]R ~) and 
from L2(~, ~) to Y{', respectively. We define the Banach space AL2(R~). To consider V ( H o - z )  -I on A L 2 ( R  ~) 
is the same as considering B ( H o - z ) - I A  on the original Hilbert space L2(~.~). The most popular factorization 
is A = I VI I/2 and, therefore, B = (sign V)I VI 1/2. 

In the following sections, we describe a generalization of the methods and results mentioned above for 
the case of many-body systems. Our generalization goes along the following lines: 

(i) Generalization of the transition from H to V(Ho-z ) - l :  the theory of regularizers for H -  z. A 
regularizer for H -  z retains two main properties of (Ho-z )  -1 which played a crucial rote in the conclusions 
above: that ( H -  z) ( H o -  z) -I - 1 is compact for z E p ( H  o) and well behaved for z ~ o(Ho) ,  and that 
(H  o -  z) -1, as an operator from L 2 ( ~  ") into D (11o) , is boundedly invertible. 

(ii) Conditions on V ( H o - z )  -I which ensure the desired properties of H are replaced by conditions on 
VI (Ho - z) -~ where V/ is a pair potential. In particular, the compactness of V(Ho - z) -1 is replaced by the 
compactness of  connected graphs 17 [VI(H o -  z)- l] .  The latter can be further reduced to the individual proper- 
ties of Vt and some kinematical facts. 

(iii) The factorization method is generalized as follows: Let each pair potential be factorizable as 
V t = AIBI, where AI, B t have the same properties as A, B. Then the relevant Banach space is constructed as 
Z A / L2(N ~') (A r is the number of ~,-dimensional particles). The operators of (ii) are replaced in this case by 
B I (H o - z ) - lA  s and H [B / (H o - z ) - l A  s], respectively. Here l and s are any two pairs of indices and the product 
is taken with respect to such pairs with the restriction that the collection of a l l / ' s  is connected. 
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(iv) The abstract scattering theory of simple systems is replaced with an abstract two-space scattering 
theory and with a theory of abstract multichannel systems. 

In conclusion, we list some of-the notations used in this article, cr (A),  p (A), and D (A) denote the spec- 
trum, resolvent set, and domain of an operator A . O'es s (A),  O'p (A) and o" a (A) denote the essential, point, and 
discrete spectra of  A. If o- (A) c 1~, we introduce 8, (A - h)  = (277 i ) -  1 [ ( A  - h - i E )  1 - -  ( A  - -  h + iE)- 1 ] .  

Let A be an operator on a Banach space X to another Banach space, then A X  denotes the range R (A),  
completed in the norm Ilxllffiinf{llyll', Ay=x},  where I1' I1' is the norm in X. Note that A X  ~- X / K e r A .  
Let {Xk} be a collection of Banach spaces which are subspaces of  some linear space. The sum E X k is a Banach 
space defined as E Xe ffi j (~ Xk ) , j (~ xk ) ~ ~'~ xk. 

1. TWO-SPACE SCATTERING THEORY 

a. This section is a condensed exposition of some results in the abstract two-space scattering theory. The  
proofs, details, and applications can be found in [27]. 

Since there is a simple criterion (see, e.g., [18], Theorem 3.7, p. 533) for the existence (and therefore 
isometry) of the time-dependent wave operators, we focus our attention on the problem of finding properties of 
a pair of self-adjoint operators which guarantee the completeness of  the wave operators for this pair. 

We use a stationary approach. Our main result shows, essentially, that if the resolvents of two self-adjoint 
operators, acting on different Hilbert spaces are proportional up to an operator-valued function which, con- 
sidered between two appropriate Banach spaces, has strong boundary values on the real axis, then the 
corresponding wave operators exist and are complete. 

b. Henceforth, H and /? / a re  self-adjoint operators on Hilbert spaces ~e' and ,~respectively, E(A),  R (z) 
and E(A),  R (z) are their spectral measures and resolvents, Ep = E(o-p (H)) and JE L (~ ;  ~ ) .  In order to sim- 
plify the notation, we assume/? / to  be absolutely continuous. 

The main object of  the two-space scattering theory is the strong limits W ± =  W ± (H,/-~/,J)= s-lim 
t ~ ± ~  

d/t -/Ht . . . .  e Je , if they exist. These fimxts are called wave operators (for the triple (H,H,J)) .  Normally, one requires 
that the operator Je -d4t be asymptotically isometric (AI): s-lira [[Je -~kt fill ffi [[ill[, tiff/7/. If w ± exist, then 

^ ^ t ~ ±  ~ 

they are intertwining for H a n d  H, H W  ± ffi W±H, and R ( W  ±) C R ( I - E p ) .  Under the additional condition 
(AI), W ± are isometric: W + * W ~ = L  W ± are said to be (asymptotically) complete (AC) iff R ( W  ±) 
= R ( I  -Ep) ,  i.e., iff W ± W ± * = I - Ep. The main problem of the two-space scattering theory !s to prove the 
existence and completeness of W ±. 

c. The notion of wave operator can be generalized if we replace the usual strong limit in their definition 
by the strong Abelian limit. The new, generalized wave operators will be called the stationary wave operators. 
They may exist even when the nonstationary (usual) wave operators do not. When the latter exist, both 
definitions lead to the same operators. Since a proof of  the existence of nonstationary wave operators usually is 
not difficult, one can recover their properties, namely completeness, from the corresponding properties of  the 
stationary wave operators. The convenience of studying the stationary wave operators is based on the possibil- 
ity of translating the expressions for them in terms of resolvents of H and H, instead of evolution operators. 

When one considers the stationary wave operators, it is also natural to replace the usual limits in (AI) by 
Abel limits. 

d. The next  step in modifying the original definition of the wave operators, in the hope of simplifying a 
proof of  their properties, is to pass from the global operators H and H to the local ones HE(A) and HE(A) ,  
respectively. Here, A is a bounded interval of ~ .  The wave operators obtained in this way are called local. 
The stationary local wave operators for the triple (H,/ / ,J)  and an interval A c ~. can be written in the form 
W ± (A)ffi s-lira W (') (A), where W(~)(A)= i~ Ja R'(h + i~)JR ( k -  ic) dk,  which will be taken henceforth as 

~ ± 0  

their definition. The condition of asymptotic isometry of Je -j[zt in the stationary, local case can be written as 
l i m f a l l J k ( X + i , ) i l l a d X  = I IE(a)f l lZ ,  v i  ~ ~ .  
~ 0  

L e m m a  1.1 I f  IIJII ~< 1 then the above condition is equivalent to the condition s-lim I~lfa k ( x  - i~) 
~ 0  

J'Jh(• + i , )  dh ffi J~(A)(SLAI). 
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The following lemma permits us to recover the existence and properties of the global wave operators from 
those of the local ones. 

Lemma 1.2. Let W ± (A) exist for all A's  from a directed sequence • = {Ai} of Borel subsets o f ~ .  Futhermore for 
any A ,A '  E ~ ,  let W ± ( M * W ± ( A ' ) = E ( A  N ~') (respectively, W±(A)  W+-(A')*=E(A N A)). Then 
W±(UA) = s-lim W± (A) (respectively, W±(UA) * =  s-limW±(A) *) exist. Moreover, if  the Lebesgue measure 

~,E~ A~UA A~U A 

of~, /  U z~ is zero, then W +- ( U A) = W ± (~ )  and are global wave operators. 

e. The following theorem states sufficient conditions on the resolvents of H and / f / in  order for the sta- 
tionary W ± to be complete. 

Theorem 1.1. Let [I  and J satisfy (SLAD. Let the resolvents of  H and [ t  be connected by the equation 

R ( z ) ( I -  Ep) = J R ( z ) O ( z ) ,  (1.1) 

where Q(z): ¢ / R  ~ U Op(~g'.~), and let there exist a collection ~ of  Borel subsets o f  R ,  a set {Xa, AE~} of 
Banach spaces, with X a C L2(~, ~ )  and with X a M (L2(~)® ~t ~) dense in X, and a dense subset X C (I - Ep) ~g" 
such that 

(i) for any A E ¢b and x E Xa, Itl f~ Ilk (x + i t )x(x) l l  2 dX ~ M [Ixl12, i.e., 8,(_/?/- .) is bounded 

from Xa to its dual X'a, uniformly in t E ~ ±  ; 

(ii) for any f E X, t E ~ ± ,  A E ~ ,  Q (. + i t ) f  E X a and has strong limits in X a as t ----, ± 0: [ I (Q (' + i t)  
- Q( .  + it') ) f l l x ~  ~ 0 ( t , t '  ~ ± 0 ) .  

Then, (a) ~rs.c.(H) t3 ( U A )  = 4~, (b) W±(A)  * =  s - l imW(' ) (M*,  exist for any A E d~ and equal s-lim, 
ACqb ~++-0 ~++-0 

W(')(A) *, where W1 (') (A)*= f a  8' ( /2 / -  X)Q(X + it)  dh,  (c) W+-(A) W±(A')  *~- E ( a A A ' ) ,  A , a '  E q~. 

Corollary 1.1. Under the conditions of  the theorem, the stationary global wave operators exist and are complete. 

f. Examples of  Spaces Xa. Given H, Condition (i) of the theorem can be considered as a restriction on a 
space to which Q (h + i t ) f ,  f E X, have to belong in order to insure the completeness of the wave operators 

1 
W ~. It can be shown that the Sobolev space//~ (~,/7/), s > ~-, satisfies (i). We now give other examples of 

Banach spaces which satisfy (i). 

First we formulate new conditions: 

(a) 8~ ( /7 / -  X) is bounded from a Banach space ~' to its dual ~ ' ,  uniformly in t > 0 and in X from any 
compact subset of 1~. 

(/3) For some bounded operators Bi from a Banach space Y{ to ~ ,  Bi'8([-1 - h)Bi are bounded uni- 
formly in t > 0 and in X from any compact subset of ~ .  

Then (/3) ~ (c0 with ~ = ~'B i Y{and (c~) ~ (i) with X a = L 2 (A, ~) .  Therefore, L 2 (z~, ~, B i Y{), where 
Bi satisfy (/3), obeys (i). 

Remark 1.1 (/3) holds if and only if each Bi is locally/~/-smooth (so that it can be taken as a definition of local 
relative smoothness). 

The following remark is useful in the N-body problem: Let T, self-adjoint on ~ ;  have the form T = T 1 
® 12 + 12 ® TI on Yt = ~ 1 ® W2. Then A ~ ® 12 is (locally) T-smooth if A is (locally) T-smooth. 

Now we consider an example, which illustrates all essential properties of a~and/7/, occurring in applica- 
tions to quantum scattering. Let A be the self-adjoint extension on L2(I~ ") of the Laplacian on Co~(l~n). 

1 n Lemma 1.3. Let Afo,~ be the operator from L 2 ( R  n) to Lioc(R ) o f  multiplication by the function foTr, where 
f E L p A L q (~l~m), p > m > q, andzr is a linear function from I~ n to 1~ m, m <~ n. Then 

IIAfo~Ra(z)A~o~II<~CIIflIL~nJI4~IIL~nL q, p > m > q. 
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Let now ~'i: R " ~  Rm, m < n, be linear functions and f/ E (LPALq)(Rm),  q < m < p. Then Lemma 
1.3 implies that the space EiAfiozrL2(F,. n) and the operator A satisfy (c~) and that, therefore, L2(A, 
EA2.o~L2(p,?)) and A satisfy condition (i) of the theorem. 

2. ABSTRACT MULTICHANNEL SYSTEMS 

Let H be a self-adjoint operator acting on a Hilbert space gt'. Following W. Hunziker, we call the triple 
= (a°~,,H,~,J,~), where ,gf~ is a Hilbert space, H,, is a self-adjoint operator on ~",~, and J,~ is a bounded operator 
from g e  into ~ ,  a channel for H if it satisfies (AI) and ~ (H,H,~,J~,) exist. W~ are called the (out- and 
in-) wave operators for the channel c~ (or simply channel wave operators). The system {a} of channels for H i s  
said to be complete iff 

~ W ~  W~* = 1. (2.1) 

It is required in the multichannel scattering .theory that all channels be mutually asymptotically orthogonal 
(independence of the channels). This means that for any pair a and/3 of different channels 

kJe, e ~ f ,  Joe-iltetd~) = O, f E a°~'~, c~ E g~'#. (2.2) 

This implies that R ( W ~ )  .1. R ( W ~ )  if a ;~/3, or, equivalently, that W ~ * W ~  = 0 (c~ ~ / 3 ) .  The latter 
together with the isometry of W~ gives W ~ ' W ~  = 8~ .  

We can define an abstract multichannel scattering system also in a weaker sense, replacing all time limits 
involved by Abel limits. 

The abstract multichannel scattering system is a special case of the two-space scattering system. Indeed, 
define 

= @ fff,~, t71 = ~ H,~ and J(~f ,~)  = ~,~ J,~fc,. (2.3) 

Then W ~ =  W~-(H, fiL, J)  can be expressed in terms of the channel wave operators W ± =  W±: W±(~f~)  
~ Y . W ~ f , ~  and, conversely, W~ can be recovered from W+-: W~ = W-+I-I,~, where II~ is the projection on 
Xin to  ~ .  

(AI) for every c~ and (2.2) imply that (AI) is satisfied for the operators J and [ I  defined in (2.3). Natur- 
+ *  + 

ally, W~ W~ = ~5,~, written in the new language, is the isometry of W -+, which on the other hand is a direct 
consequence of (AI). Condition (2.1) of the completeness of the system of channels for H is translated into 
W -+-language as W ±-completeness. 

3. R E G U L A R I Z E R S  

In this section, we give a definition of regularizers and present without proofs some results which illus- 
trate their application. 

Definition 3.1. We call an operator F from ~°to D (T) a (right) regularizer for an operator T if and only if F is 
invertible and TF - I, raised to some power, is compact. 

In the sequel, H and G denote, respectively, a self-adjoint operator (in general unbounded) acting on a 
Hilbert space ~ ,  and an open set in C with a smooth boundary. 

Theorem 3.1. Let there exist a family F( z )  of  regularizers for H - z, z E G. Then ~res s (H) C C\G. 

Theorem 3.2. Let G c C\¢ress(H) and F(z )  be a regulanzer for H - z for all z E G. Furthermore, let there exist 
Banach spaces X c ~ and Y D D (H) , such that 

(i) F(z )  is bounded from X into Y and is weakly continuous as z E G approaches possible accumulation points 
o f  ~d(H)  M G and Ker F(z )  = {0} for such points z. 

(ii) (H  - z ) F ( z )  - t is bounded on X, strongly continuous as z E G approaches possible accumulation points 
o f  (rd(H) M G, and, raised to some power, i~compact on X and norm-continuous as z E G approaches the above 
points. 
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Then the number of  eigenvalues of  H inside G is finite. 

Define B i , ,  = {f E ~ :  IIIIx+hf-Ilxf[[~ ~< CIhP}, where {IIx} is a unitary operator from f~ to  a 

representation of ,OrS/as the fiber direct integral y ~x d~ (~.) with respect to 

Theorem 3.3. Let G c C\cress(H) and F(z )  be a regularizer for H - z for all z E G. Let H and J be as in Sec. 1 
and F(z) be representable as F(z) =JR ( z )F(z ) .  Furthermore, let there exist Banach spaces X c aqg and X c ~ ,  
such that 

(1) F( z )  is bounded from X into J( and strongly continuous as z approaches O G; 

(2) (H - z )F ( z )  - I is bounded on X and strongly continuous as z --* OG and, raised to some power, is com- 
pact for all z E G. 

1 
Assume, in addition, that either (3) J( C Bk.~,, IX > -~, or 

(3) there is a unitary representation, 0 ~ U(O), o f~ ,  on aql~uch that U(O)HU(O) -I and U(O)F(z) U(0) -1 
have analytic continuations to a domain 0 C C, 0 M ~ ;~ 4~, for which O'ess(H(O)) M G = fJ for Im 0 ~ 0. 

Then R (z) is representable as R (z) ( I -  Ea, G) = JR Q (z), where Q (z ) (  E B ( ~ ,  ~ ) )  is bounded from X to 
and strongly continuous as z ~ 0 G and Ea. G is the projection on the eigensubspace of  o-p (H) D G. 

4. HAMILTONIAN 

In this section, we define the Schr6dinger operator (Hamiltonian) of a many-body system and discuss 
some fundamental properties of the potentials. 

Consider a system of N~,-dimensional particles of masses m;, interacting via pair potentials Vl(x;). Here l 
labels pairs of indices and x; = x; - xj for l = (ij). The configuration space of the system in the center-of- 

u A ! . . . .  mass (CM) frame is defined as R = {-x E ~ ,Emixi = 0}, with the tuner product (x,x) = Emixi "xi. Denote 
by v t and V / the multiplication operators on L 2 ( R  ~) and L2(R) with the functions V~Cv) and Vt(xt) , respec- 
tively. 

We assume that v; is A-compact, i.e., compact as an operator from the Sobolev space H 2 ( ~  ~) to L2(~,~). 
Then the operator 

1 
H = H o + ]~ V/, H o = - ~- (Laplacian on L2(R)) ,  

is defined on L2(R)  and is self-adjoint there. 

Remark 4.1. Potentials of the class L q ( ~  ~) + (L~(nt~")),, q > max (v/2, 2) if v ' #  4 and q > 2 if v = 4, 
where the subscript ~ means that the L~-component can be taken arbitrarily small, are ALcompact. 

Definition 4.1. The monomials of the form H[VIRo(z)] and H[sign(Vt;)lVt;ll/2Ro(z)lVt;+lV2], where 

R o (z) = ( H o -  z) -1, are called graphs and modified graphs, respectively. A (modified) graph is called con- 
nected if and only if U l = (1 . . . . .  N) and the l ' s  can be arranged in a sequence with any two neighboring 
pairs having at least one common index. 

It is evident that (modified) graphs are bounded operators on L2(R) .  

Proposition 4.1. I f  each vi is A-compact, then any connected (modified) graph is compact. 

Before proceeding to the proof of this proposition we introduce some useful operators (see [7,8]). Let 

X E C~(N") ,  X ( x )  = 0 for Ixl ~< 1 and X ( x )  = 1 for Ixl > 2. 

We define the multiplication operators X/n) on L2(R)  by functions X(x; /n)  and the operators ~(n) = I - X; ("). 
Note two important properties of these operators: 

s 

Xt (') ~ 0 (n ~ oo) (also as an operator in L 2 (R")) (4.1) 
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and 

[~(,)  14o] (tlo _ z) -1 [X/(n) H0] (H0 _ z) -1 nor.__,m 0 as n ~ 

(actually as O(n- l ) ) .  (4.2) 

Equation (4.1) (on L2(~Y)) and the relative compactness of vt imply that 
norm 

XI(")Vt(Ho - z)  -1 --~ 0 (n  ~ c o ) .  (4.3)  

Proof of  Proposition 4.1. Consider for definiteness a graph. We write V/= (Xt (") + X/(")) V/and decompose the 
graph into the sum of the corresponding terms. Because of (4.3), each term, containing at least one Xt (n) V~, 
vanishes in norm as n - -  oo. In the summand  with all X/(~) V~, we commute all ,~/(~) to the left, in front of  the 
monomiat. The terms, containing at least one commutator ([Ho, Xt~")]), vanish by (4.2) as n ~ ~ .  Thus,  
after all these operations, the only nonvanishing in the limit n ~ ~ term is of the form IIXt(~)II[V~Ro (z)]. Of 

-(n)  course, for any connected graph, an operator of  the form YIXt V~Ro(z) is compact (I/X/~") E C o ( R )  by the 
construction of ,~t ~n) and the connectedness of  the graph). Therefore, the nonvanishing term is also compact as 
a product of  compact and bounded operators. Since this term approximates the graph in norm, the graph is 
compact as well (closeness in the uniform operator topology of the set of compact operators). 

5. CONSTRUCTION OF R E GUL AR IZ E R S .  EXAMPLE 

In this section, we give an example of regularizers which play an important role in the many-body prob- 
lem. 

Definition 5.1. Let A be a finite lattice and {Ha, a E A} a collection of operators on a Banach space ~ .  We 

define by induction on a E A: Aa (z) = / ,  a = min A, 

Aa(z) = (Ha - z) (Ho - z) --I ~I Ab(z) -1, (5.1) 
b C a  

where 11o = Hm~nA and the arrow on the top of the product sign means that the order of the A - l ' s  is such that 
if A~ -x stands on the right of Ad -l then c ~ d. 

We set 

Fa(z) = (1to - z) - l  YI Ab(z) -1 
b C a  

and H = Ha, A = Aa and F = Fa for a = max A. Definition (5.2) implies that 

(Ha - z) Fa (z) = A~ (z). 

(5.2) 

(5.3) 

It follows immediately from the definition that Fa (z) and Aa (z) are bounded on ~ into D (Ha) and on ~ ,  
respectively, and Fa(z) is boundedly invertible. We will show later that, under certain restrictions on 
{Ha,a ~ A},  F(z)  is a regularizer for H - z. 

If we impose some additional restrictions on {Ha} , the operators F a (z) and A a (z) acquire certain useful 
properties. We assume now that the operators Ha are built as Ha = T + ~'. lib, where Va, a E A are T- 

bC_a 

bounded operators with relative bound 0. In this case, the operators F a(z) and A a(z) have additional struc- 
ture: 

Lemma 5.1. The operators F a (z ) and Aa (z) - I are finite linear combinations of  monomials of  the form 

Roll[VeRb], c, b C a, andII[VcRb], b c a ,  U c =  a, (5.4) 

respectively. 

The statement can easily be derived by induction. The details can be found in [25]. Note here only that, 
since V a have T-bound 0, they are Hb-bounded as well. Therefore, monomials of form (5.6) are bounded and 
analytic in z E A p (116). 

Lemma  5.2. For z with dist(z,o '(T)) sufficiently large, A a ( z ) -  I is a norm-convergent series of  a-connected 
graphs, 

II [Vc(T--  z)-l]..  
U C = a  



155 

Proof The statement follows from Lemma 5.1 and the fact that for dist (z,~r(T)) large enough the following 
series is norm-convergent: 

Indeed, I Ih (T - z)-~ll ~ 0 as dist (z,o-(T)) ~ co for any T-bounded operator A. 

Now we proceed to the N-body systems. 

Definition 5.2 (Lattice of Decompositions). Let a = {C~} be a decomposition of the set {1 . . . . .  N} into 
nonempty, disjoint subsets C~, called clusters. Denote by (~ the set of all such decompositions. (~ can be given 
the structure of  a lattice; namely, if b is a partition obtained by breaking up certain subsystems of a, we shall 
say that b is contained in the partition a, writing b C a. The smallest partiti,m containing two partitions a and 
b will be denoted by a t.9 b, i.e., a U b = sup(a,b).  The largest partition contained in both a and b will be 
denoted by a N b: a (q b = inf(a,b).  

A pair l will be identified with the decomposition on N - 1 clusters, one of which is the pair I itself and 

the others are free particles. Therefore, in the N-body case, Ha = 11o + ]~ V~. 
IC_a 

Combining Lemma 5.2 and Proposition 4.1, we obtain 

Corollary 5.1. Let H be an N-body Hamiltonian as defined in Sec. 4 and A (z) the operator constructed in (5.1) for 
it. Then L (z) ~ A (z) - l is compact for z 6 N p(Ha),  i.e., F(z )  is a regularizer for H - z ,  z 6 A p (Ha). 

Corollary 5.1 and Theorem 3.1 imply 

Corollary 5.2. Let H be an N-body Hamiltonian in the CM frame, as defined in Sec. 4. Then 
O'ess(H) C (q o'(Ha). 

Remarks  5.1. (1) The converse direction, O'er(H) D U ~(H~),  is the easy one. It is usually proved [22] by 
explicitly constructing Weyl sequences for H. (2) Of course, one can allow in Corollary 5.1 for many-body 
potentials [31], and everything goes through in exactly the same way. 

6. ASYMPTOTIC COMPLETENESS OF SINGLE-CHANNEL SYSTEMS 

In this section, we illustrate methods of the previous sections with a proof of  asymptotic completeness of 
short-range, single-channel systems. We remind the reader that single-channel, many-body systems are charac- 
terized by the condition: o-p(H a) = ~ for all a with 1 < # (a) < N, where # (a) denotes the number of clus- 
ters in the decomposition a. Therefore, the collection of all channel Hamiltonians H,~ is reduced to only one 
Ho. 

As the first step in our analysis, we reformulate accordingly the results of Sec. 1. In the single-channel 
case, ,,@=,,~', [ l =  Ho, and J =  L Therefore, O ( z ) =  ( H o -  z ) ( H - z ) - l ( 1 -  Ep)= ( I -  V ( H - z ) - X ) ( 1 -  Ep). 
Taking this into account in Theorem 1.1 and using in it the Banach spaces (suggested by the example in Sec. 1) 

Xa = L2(A,X),  X = ~ I V~I'ZL2(R), (6.1) 

we find the following 

Theorem 6.1. Let ]VII 'h be H~.-smooth and let [ VI ['~ R (z ) (I - Ep) ] V~[ '~ be defined on L 2 (R ) for all l and s and 
strong~ continuous as I m z - - - ' 0 .  Then (~) O's.c.(H)= ~,  (13) the adjoint stationary wave operators 
Z ± = s-lira i e f R o ( k  - ie )R (h - ie)dX exist and are complete, i.e., Z :~ *Z ± = I -  Ep. 

~ ± 0  

Our next task is to reduce the second condition of Theorem 6.1 to a condition on the potentials V I and 
free motion Ho. In order to simplify slightly the considerations, we assume that the potentials V/ are dilation- 
analytic [22]. We define 

R a = {xeP~ : ~ .  mix i = O, V C  k 6 a} and H a = T a + ~ V t. 
iEC k I ~ a  
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Here, T a ~  - (1/2) (Laplacian on L2(Ra) ) ,  lit is the multiplication operator on L2(R  ~) with the function 
V~(xt) (note that xt = (II~x)l for I C a, where II ~ is the projection from R onto R~). 

Our basic abstract restrictions on the potentials and free energy are 

(I) (Strong Ho-smoothness of {] VII'/2}) For all l a n d  s, the operators [Vtl'/~Ro(z)lv~l '/~ are bounded on 
L2(R  a) for each a with l, s c a  and strongly continuous in z E ¢ XR up to R.  

(II) (Compactness of (modified, a-)connected graphs) There is an n < oo such that a product of n opera- 

tots of the form II [sign (111) [ Vl~ IV'Ro (z) I Vt,+~l ~'~] is compact on L 2 (R"), a E A. 
u I ~ a  

Let Ha(g)  = T a + ~', gt Vt on L2(R~),  R~(z ,g)  = (Ha(g)  - z )  -1 and denote by G ~ a connected subset of 
I C a  

{g E C # or/ca: o.p(Ha(g))  ~ 0 ,  V b C a, b ~ min A}, containing 0. 

Theorem 6.2. Assume Conditions (1) and (II) are satisfied. Then for  any a E ~ and l, s C a, I Vtl'/~Ra(z,g)lVs] '/~ 
is a family o f  bounded operators on L 2(RO), strongly continuous in z E (E\I~ up to R and analytic in g E G a. 

Before we go over to the proof of Theorem 6.2, we first discuss Condition (II). Using the same argu- 
ments as in the proof of Proposition 4.1 (and a resolution of the identity containing a m o m e n t u m  cutoff func- 
tion when momenta  appear in the commutators) we obtain easily 

Proposition 6.1. Let  F t be multiplication operators on L2(R) by functions F(x/) , where F E Co(YR' ) .  Condition 
(I1) with n = 1 follows from the following condition: 

(11') For all I and s, the operators B tRo( z )A  s are bounded on L2(R~), a D l, s, and strongly continuous in 
z E ~ \ R .  Here AI, B / =  I VII V2, F/~(pj), with d~ E C o  (R) andpt  the relative momentum for  1. 

Thus,  we can state 

Theorem 6.3. I f  Condition (H ') is satisfied, then the statement o f  Theorem 6.2 holds and, therefore, for  
g E G ( ~  Gafor  # (a) = 1) o'ss.c " ( H ( g ) )  = 0 and Z +- (g) = Ws+t(Ho,H(g))  exist, are analytic in g E G and are 

complete, i.e., Z +- (g) *Z +- (g) = I - Ep(g).  

Using the relative smoothness  estimates [14,15] or [25] one proves (see Lemma 1.3): 

Proposition 6.2. Let V t E L p ¢3 L q (P,~), p > ~/2 > q. Then Condition (11') holds. 

Corollary 6.1. I f  the potentials satisfy the condition o f  Proposition 6.2, then the statement o f  Theorem 6.3 is true. 

Sketch o f  proof  o f  Theorem 6.2. Looking at Theorem 3.3, we see what we have to prove about F ( z )  and A (z), 
defined in Sec. 5. We proceed by induction on a E A. For a = rain A, the statement is trivial, R a = {0}. Let 
the statement of Theorem 6.2 hold for all b, b c a, and let us prove it for a. Instead of studying Ra(z )  and 
then concluding about ]VtL'hRa(z)lVsl '/2, we will investigate the latter directly. To this end, we first write the 
equation R ( z , g ) A ( z , g ) =  F(z ,g )  for the matrix [IV~I'/2Ra(z,g)IV~]'/'], which follows from Ra(z ,g)  x 
Aa(z ,g)  = F~(z,g). The boundedness of A (z,g) and F(z ,g)  on (D L 2 ( ~  a) and analyticity in g E G a for all 
z E ~ \ ] R  up to R. follows immediately from the inductive assumption and Condition (I). To see this, we 
represent the matrix elements in L (z,g) = A (z,g) - I as linear combinations of terms of the form 

Rb(z ,g)  H sign vl, l vl l'/2Rb (z,g) I Vl.~l'/q, 
biCa,  l i ~  a t i i .  

where li,li+ ~ c_ b i if #(b i  <~ N (and similarly for F(z ,g ) ) .  The only thing which needs to be proved here is that 
the estimates for IVtl'/'Rb(z,g) lVsl'/2 imply similar estimates for I Vtl'/~Rb(z,g)lV~l'/% i.e., that the CM motion of 
the clusters in the decomposition b can be introduced without trouble. The latter proof is rather straightfor- 
ward. 

To prove compactness of L ( z , g )  for g E G a and all z E (~ \R  up to 1~ we note first that, since L ( z , g )  is 
analytic in g for g E G  a, it is enough to prove compactness for a small neighbourhood of g = 0. For g 
sufficiently small, each entry in L (z,g) is, as follows from the previous paragraph, a norm-convergent series in 
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powers of g whose coefficients are connected modified graphs. Since the latter graphs are compact by (II), each 
entry is itself compact by the theorem on the closedness of the set of compact operators in the uniform topol- 
ogy. 

Applying a modification of Theorem 3.3 completes the proof. 
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NOTES 

1. Section 1 is a condensed version of [27,part I] (see also [28]). The two-space scattering theory was 
initiated by KATO [16] and its stationary formulation was developed by BIRMAN and SCHECHTER 
[1,2,20,23] for simple systems and by HOWLAND [11] and KATO [17] in the general case. It was applied to 
the study of three-body systems by HOWLAND [11], KATO [17], and YAJIMA [33]. 

Independently and on a more formal level, the two-space theory and its application to multiparticle 
scattering was studied by CHANDLER and GIBSON [3] (see also [4]) and by PRUGOVECKI [21]. 

The main definitions of this section follow KATO [16] and HUNZIKER [13]. Theorem 1.1 is close to a 
similar result of KATO [17] (actually, the manuscript of series [27] was completed long before the author 
learned about KATO's paper [17]). The Banach spaces ZA~ H of the example (see also Sec. 6) were introduced 
independently in [25] and [33] (see also [6]). 

2. Abstract multichannel systems were introduced by HUNZIKER [13]. 

3. The results of Sec. 3 are due to SIGAL [26]. However, Theorem 3.3 was first proved with a restric- 
tion slightly stronger than (3). Theorem 3.3 with Condition (3) was proved by HAGEDORN [9]. 

Note that regularizers were first introduced in PDE's. Our definition differs from the one accepted in 
PDE's, where the invertibility of F is not required and, therefore, the condition that some power of T F  - I be 
compact is equivalent to the restriction that T F  - 1 i s  itself compact. 

4. The space R and the inner product ( x , y )  of Sec. 4 were introduced in [31]. Relatively compact poten- 
tials were introduced in [5]. Compactness of connected graphs was proved by various authors [12,5], who 
assumed different restrictions on the potentials. Our proof is the simplest and allows for the most general sys- 
tems. This is achieved by using the ENSS type operators Xl (n) [8] with the Corresponding commutator esti- 
mates. 

5. The regularizers of Sec. 5 come from equations introduced by BEREZIN [34] (see also [24-28]). The 
statements of this section, except for Corollary 5.2, were proved in [25,3]. Corollary 5.2 is the difficult part of 
the HVZ theorem [22]. 

6. The content of Sec. 6 is taken from an unpublished work of the author [29] (see also [30]). The com- 
pleteness of the wave operators for single-channel systems was proved by HEPP [10] for smooth, finite-range 
potentials, by LAVINE [19] for repulsive potentials and by IORIO and O'CARROLL [14] for weak potentials 
(with the same restrictions on the decay and smoothness as in Corollary 6.1). Thus, the results of this section 
on the asymptotic completeness of short-range, single-channel systems are the most general. 

Note that Condition (II9, actually, is not stronger than (I). There are other, direct proofs of Condition 
(II) with n = 4 N -  4 [10] and n = 3 [25] for S( I t  ~) potentials [10] and for a class of potentials for which (I) 
holds [25]. The proof in [25] is based on an approximation of the V's in a norm for which (I) holds and an 
estimation, in the momentum representation, of the kernels of the approximating graphs. The latter is done by 
the integration of the denominator (coming from R o's)  by parts, using Feynman's identity 

Ai -1 = y t3( o: i - 1)dSa. 
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SCATTERING FROM POINT INTERACTIONS 
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INTRODUCTION 

The simplest example of a Schr6dinger operator with a point interaction in 3 dimensions is the Laplacian 
with a boundary condition at the origin 

lim (Or r - ar)@ = O, (1) 
rl0 

r = [xl ,a  a real constant. Two generalizations of this operator will be considered; (1) the 3-dimensional 
Laplacian with boundary conditions imposed at several points (quantum pin-ball machine), (2) a 3-particle 
operator given by the 9-dimensional Laplacian with boundary conditions analogous to (1) imposed along the 
particle-collision hypersurfaces. 

These operators and relatives of theirs have a venerable history going back several decades. Originally, 
they were studied by BREIT, THOMAS, WIGNER, and others as nuclear models with interactions simulating 
potentials of short range [1]. They observed that potential scattering, with suitably scaled negative potential, 
converges in the low energy limit to scattering from a point interaction. In the late 50's and early 60's, 
HUANG, YANG, LEE, LUTTINGER, and WU studied multiparticle operators with pseudo-potential interac- 

tions (formally, ~".8 ( x i -  xj) zO-~ru) in low-order perturbation theory [2]. Their goals were to delineate spectral 
i<j u, U 

properties of the operators and to investigate the statistical mechanics of particles with these interactions. 
Because of the singular nature of the interactions, higher-order perturbation theory was difficult; no attempt was 
made to interpret the operators as self-adjoint. 

Beginning in 1961, a series of papers by DANILOV, MINLOS, and FADDEEV appeared concerning the 
3-body operator defined via boundary conditions [3]. The physical motivation was to compute the bound-state 
energy of tritium from 2-body scattering data. More will be said about this work in Sec. 2. There is a fine sur- 
vey article by FLAMAND [4]. 

There is recent work on these operators as well. FRIEDMAN, ALONSO Y CORIA, and NELSON have 
considered the problem of operators with potentials of shrinking support [5]. (Some of this work has pro- 
ceeded by techniques of nonstandard analysis.) Hoegh-Krohn and Grossmann have done work on the quantum 
pin-ball machine and have work in progress in which an infinite number of pins are placed in a periodic 3- 
dimensional array (solid-state model). The second section is a sketch of my own work on Birman-Schwinger 
bounds for the pin-ball machine [6]. 

It is perhaps appropriate to mention there is some vague "theoretical" justification for considering these 
interactions. DIMOCK has shown that the nonrelativistic limit of P(6)2, quantum field theory in one space 
dimension, results in a 8-function potential between particles [7]. The boundary condition (1) is just the 3- 
dimensional analogue of the 8-function interaction in one dimension. 

1. QUANTUM PIN-BALL MACHINE AND BIRMAN-SCHWINGER BOUNDS [6] 

Let - A '  be the operator acting in L2(lq. 3) obtained from the Laplacian by imposing boundary conditions at 
N"pins" Xl, x2 . . . .  , x ,  6. ~3  
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liml O-~-ri[ -arjlq~l = O, rj = Ix-xtl ,  i =  1,2 . . . . .  N. 
r'l°[ Ori I 

AS is well known, the resolvent kernel for the operator --A' is 

( - -A '+  k2)-l(x,y ) = 

(1.1) 

1 e -xlx-yl 1 ~ e -klx-xjl e -kly-xj] 

47r I x - y l  ( 4 T r ) 2 ~  T°(k) ly-x j l  ' 

with T(k)  the matrix inverse of A (k), 

1 e -klxj-x/I 

(The scattering amplitude for - A '  is 

1 ~ - i k o u t . X i ~  t . . .  i k i n ' x ' \  
f(kout,kin) = - - ~ - 2 ~ e  l , j t - i k ) e  ~.) 

t,J 

(1.2) 

(1.3) 

Let 

kN = ° o ,  kN_l = SUp Ix,-x/-2 
l<~i<~N i J # i  

Assume, by relabeling the x,'s, if necessary, that the supremum is attained for i = N. Let 
f~v-] 11/2 

k^,-2 = SUp / Y. Ix,-xj 1-21 
"<'r- tiJ*, I 

and define kN-3 . . . . .  kl by continuing in this manner. 

Theorem (Birman-Schwinger Bounds). The eigenvalues {ei} of --A ' satisfy 
N 

]~ le, I<2K2(N-1) + cY, lx,-x/-2 (1.4) 
et<--K2 ! < j 

with K = 0 i f a  >/ 0, - a  i f a  < 0, and the constant c independent of N, c~. For k > r,  N ( k )  =-- the number of 
eigenvalues, counting multiplicities <~ - k 2, satisfies 

N ( k  + r ) < ~ 4  ~,  e-2(k+~)lxe-xjllk2lxi--xjl2 + e-2(k+~)lx'-xjl}-] + ( N - m ) ,  
i < j  

k,n-l ~ k < kin, m =  1,2 . . . . .  N. (1.5) 

The theorem has the following interpretation: suppose N non-self-interacting fermions were allowed to 
interact with N pins via the boundary conditions (1.1). In their ground state, the fermions would create an 
effective potential between pins which, if (1.3) were equality, would be -r-2-1ike at small distances between 
pins. In a statistical mechanical context, (1.3) is an estimate on the potential between pins required for 
thermodynamic stability. (Note that if a = 0, the eigenvalues ei are homogeneous functions of degree - 2  in 
the xi's. In this sense, (1.4) gives the correct dependence on the x/s .)  

The proof of the theorem, in outline, runs as follows: - A '  has an eigenvalue - k  2 if A (k) has eigenvalue 
0, or if B ( k )  = C-[/2(A ( k ) +  C ) C  -1/2 has eigenvalue 1, where C is an arbitrary positive definite diagonal 
matrix. The derivative of B(k)  is negative definite, so that by first order perturbation theory an eigenvalue of 
B(k )  is decreasing in k. As a consequence, N ( k )  is equal to the number of eigenvalues of B ( k )  exceeding 1. 
An estimate for N ( k )  is thus the square of the Hilbert-Schmidt norm of B (k), lIB (k) 112 2. 

In this argument, the matrix C is arbitrary; it can be chosen to optimize the estimate on N(k ) .  At this 
point, C acquires a dependence on k. Minimizing IIB(k) ll 2, we are led to a set of equations for the entries ci 
of C, 
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with 

ci-t + £ Lu(k)c71= 1/k, i =  1,2 . . . . .  m, 
J 

e-2(k + ~)lxi - xjl 

where we consider the equations as m-dimensional. The key fact is: 

Lemma. Equations (1.6) are solvable with each cj > 0 i f  
m 

sup ~_.,Lij (k) < 1. 
i ij 

(1.6) 

(1.7) 

The hypothesis of the lemma insures that the equations can be solved by a Neumann series, and further 
that the q ' s  will be positive. 

For kin_ 1 ~ k < k m  the hypothesis of the lemma is satisfied. An estimate on N(k )  is thus [[B(k)[[~, 
with Cl . . . . .  cm the solution to (1.6) and the remaining c~'s set to oo by a limiting argument. A simple esti- 
mate on the ci's coming from (1.6) gives (1.5). This estimate on N(k) ,  plus an integration by parts on 
f k 2 d N ( k )  , gives the estimate of the theorem. (1.4) 

2. INTRODUCTION TO THE 3-BODY PROBLEM [41 

We first divide out by center-of-mass motion so that the relevant operator will be acting in L2(~.6). Let 
(x,y) be the coordinates for ~t~.6 with x, y each 3-vectors. Let S1 = {(x,y)[y = 0}, $2 = {(x,y)ly - -,/3x = 0}, 
$3 = {(x,y)[y + 4 3 x  = 0} be the collision surfaces. Corresponding to the collision surface Si, let (x( i ) ) ,y  (i) 
be coordinates of R 6 so that St = { (x (i),y (i)) [y (i) = 0}. Then, the 3-body operator H is obtained from the 6- 
dimensional Laplacian by imposing boundary conditions along S i, 

lim0[~-~/r/' . - a r i ] ~ ( x ( i ) , y ( i ) ; =  O r, = [y(i)[, i =  1,2,3. (2.1) 

By analogy with the quantum pin-ball machine, we attempt to write the resolvent as the free resolvent 
plus a correction consisting of the free resolvent integrated against a "charge" density X supported on the colli- 
sion surfaces. Imposing the boundary condition on this resolvent leads to a coupled set of integral equations 
for the density. Making the further assumption of.Bose symmetry, we arrive at a single integral equation, the 
Skorniakov-Ter Martirosian equation for the density, which in a Fourier transform representation reads 

2 p,2 A,~(z)f~(p) =- (a +-vr~p2- z)~(p) - - - - - ~  fF.3 (p2_ p . p, + - 3/4z)-l~(p')dSp'= ~o(p). (2.2) 

Here, X0(P) is a known function. 

The operator A,,(z) clearly commutes with rotations and can be reduced. The restriction of (2.2) to 
higher angular momentum channels presents no particular problems, but in the s-wave channel the situation is 
complicated. By an analysis involving the Mellin transform, MINLOS and FADDEEV [3] have shown that in 
this channel, (2.2) is solvable, but that the solution is not unique. In more technical terms, for z negative real, 
As (z) is not essentially self adjoint on, say, functions of rapid decay at co. 

Further "boundary" conditions must be imposed on A,~(z). They take the form of specifying the asymp- 
totics p ~  of the solution to (2.2) in a manner reminiscent of a radiation condition. Moreover, the choice of 
asympotics should be z-independent if the first resolvent equation is to be satisfied by ( H - z )  -l .  (It is perhaps 
worthwhile to mention that ALONSO Y CORIA [5] found that if H '  is the limit of a sequence of 3-body 
Schr'6dinger operators with shrinking potentials and H'  is not the free Hamiltonian, then 1-1' is not necessarily 
essentially self-adjoint on functions in the domain of H'  supported away from the origin in ~6.) 
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Then a peculiar phenomenon occurs. One can show there is an infinity of real negative z values, converg- 
ing to -0% for which (2.2) has a homogeneous solution satisfying the asympotic condition. Consequently, 
regardless of the parameter a or the particular asympototic condition selected, H has a negative discrete point 
spectrum extending to -oo.  Intuitively, there is an infinity of eigenfunctions with supports more and more 
concentrated about the intersection of the collision surfaces. (One possible remedy to this situation is to 
replace the scalar a in the boundary condition (2.1) by an operator c~ 0 -a lAx( i )  where ~x(i) is the "tangential" 
Laplacian. This leads to a semibounded operator while, maintaining the point-like nature of the interaction. The 
physical interpretation of this new boundary condition is not clear, however.) 

We conclude with remarks on the scattering theory for H. In preliminary studies, J.V. Ralston and I did 
show existence of the wave operators by a KUPSCH-SANDHAS argument [8]. We also established a local 
decay of the wave function t~t (and decay away from the collision surfaces) of the sort one might need in a 
geometrical approach to asympotic completeness. 
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I N T R O D U C T I O N  

The subject of this talk is time-dependent Hamiltonians in quantum mechanics and a method of dealing 
with them. I hope to convince you of two things: first, that there are interesting problems with time-dependent 
Hamiltonians; and second, that the method is natural for dealing with them. 

I will first describe the method, and then discuss its applications to two problems. I submit that the prob- 
lems are of substantial physical interest, and that the method provides natural insights into them. 

My handling of these subjects will be heuristic in the extreme, since full details are available elsewhere in 
printed form (or shortly will be). 

1. T H E  M E T H O D .  

The method arises from a procedure in classical mechanics. Consider Hamilton's equations of motion 

dq OH dp OH 
dt Op ' dt Oq ' 

where the Hamiltonian H(p,q,t) depends on time. Bringing in the time t as a new coordinate, the energy E of 
outside sources as its conjugate momentum, and the new Hamiltonian 

K(p,q,E,t) = E + H(p,q,t), 

leads to the equivalent equations 

dp OH dp OH 
do- Op'  do- Oq'  
dt dE OH 

1, 
do- do- 0 t ' 

in which K is independent of the time o-. Thus, by a simple transformation, every temporally inhomogeneous 
system reduces to a conservative, homogeneous one. 

In quantum mechanics, the state vector of a temporally inhomogeneous system satisfies a Schrodinger 
evolution equation 

iO0---~t = H(t)O,  (1) 

where ~ lies in a Hilbert space ,g~i The solution of such an equation is given, at least formally, by 

~,(t)  = u ( t , s ) O ( s ) ,  

where U(t,s) is a unitary operatory called the propagator which satisfies U(t,s) = I and U(t,r) U(r,s) ~ U(t,s). 
If we proceed by analogy, we find that the corresponding conservative system has the equation 

• d ~  
t-d~-- = K ~ ,  

where q t is in if / '= L2(-oo,oo; X") and 
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K = - i ~ t  + H ( t ) .  (2) 

The theory of K should, therefore, be equivalent to the theory of the evolution equation (1), a fact which is 
surprisingly useful. 

For '.me thing, it lets us generate propagators just as we generate semi-groups, by constructing a generator. 
The sort of generator we want is a self-adjoint operator K on Y{" of the form (2), but what does that mean? 
One way to make it precise is to remark that, since the second term commutes  with the scalar multiplication 
operator 

Q f ( t )  = t f ( t ) ,  

.0 the operator K must  have the same commutator with Q as the operator P = - t - ~  does; that is, the CCR 

K Q -  Q K  = il. (3) 

We shall define an evolution generator to be any self-adjoint operator K on Yg which satisfies the CCR (3) (in 
Weyl 's  integrated form, [1], p. 225). Formally, K and its propagator U(t,s)  are connected by the formula 

e- i~Kf ( t )  = U(t , t  - ~r) f ( t  - ~ ) .  (4) 

(TO verify this, differentiate with respect to ~r, use that U satisfies (1), and set cr equal to zero.) The connec- 
tion is, in fact, rigorous: 

Theorem. For every evolution generator K, there is a unique measurable propagator satisfying (4). 

The proof is very near at hand. For K and Q are a canonical pair, so by von Neumann ' s  theorem on 
representations of CCR, there is unitary U on Y~, with 

Q = UQU* (5) 

and 

e -j'~K = UT~ U*, (6) 

where T ~ f ( t )  = f ( t  - o-). (5) says that U c o m m u t e s  with Q and, hence, is a multiplication by a unitary U(t ) .  
Substituting into (6) then gives (4), with U(t,s)  = U( t )  U(s )  *. 

Of course, we would like to have U(t,s)  strongly continuous as well. This requires essentially that K also 
generate a contraction semigroup on Co(-Oo, oo;a~). In practice, when K is constructed by perturbation from a 
K0 with a continuous propagator, it is usually easy to show that U(t,s) is continuous. 

2. THE AC STARK EFFECT 

As our first application, we shall consider a hydrogen-like atom in a spatially uniform electric field which 
is oscillatory in time. The Hamiltonian in question is 

H ( t )  = --A + V(x )  + Exlcos o~t (7) 

on ¢,qg' = L2(~,3), which has period a = 2rrto -1. To construct dynamics, we must  show that 

i 0 K = -  - ~  + H ( t )  

is essentially self-adjoint. Now, the ordinary Stark Hamiltonian 

H~ = --A + V(x )  + ~xl (8) 

is essentially self-adjoint by the commutator theorem [7, X.5] because it satisfies the inequality 

+_i[H,,N] <~ CA r 

where 

N =  H~ + cx2 + b 

As B. Simon has pointed out, the same proof works for K if we amend N to be 

d 2 
N' = - ' - ~  + H ( t )  + cx 2 + b. 
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The physical question to be considered is: What happens to the bound states of 

H = - A  + V ( x )  

when the Stark field 

~XlCOStot 

is turned on? In the ordinary (DC) Stark effect, we know that the bound states disappear, but that the eigen- 
values reappear as "resonances"-- poles of some sort of continuation of the resolvent of H,. The physical 
interpretation is that, for small ~, the bound state is unstable and decays at a rate given by the imaginary part of 
the pole. From the intuitive physical point of view, there does not seem to be a great deal of difference in the 
two cases, but mathematically, if one wants to study resonances, and perhaps calculate the decay rate, the 
immediate question is "what am I supposed to continue?". The present method leads quickly and naturally to 
the answer. 

The point is that, because H ( t )  is periodic in time, K has a symmetry: it commutes with the unitary 
translation 

T~f ( t )  = f ( t  - a ) .  

In fact, since the method regards t as a spatial coordinate, the situation is exactly analogous to the spatially 
periodic "crystal" problem [9]. If Yt" is decomposed as a direct integral 

x = e fo2~(O)dO 
in which T a is diagonal, then Kwill be an operator-valued multiplication: 

K = ~ J 0  K(O)dO. 

The operator To is easily diagonalized by the Fourier transform, and one finds that 3/'(0) can be taken for all 0 
to be the space 

3~" = L2([0 ,a] ;~)  

and that 

K ( O ) =  R + O, 

where k is formally the same differential operator as K, but with the periodic boundary condition 

u(O) = u ( a ) .  

The operator/~ appears in the physical literature as the "Floquct Hamiltonian" [8] or the "quasi-energy" 
[10]. It is really quite analogous to an ordinary SchrSdinger Hamiltonian. For example, by (6), K is unitarily 

i0 equivalent to the generator - ~ of T~, which is absolutely continuous, but k can have point spectrum. A 

point k is in trp(K) if 

U ( a , O ) f  = e- iXaf  

for some nonzero f in ag'. This means that the state f (considered as a ray in Hilbert space) is invariant under 
evolution through a period. Clearly, O-p(K) is periodic with period 27ra - l  = to. In the special case of constant 
H ( t ) ,  

[~ = - i - ~  + H, 

for which U(t ,s )  = e -iH(t - s), one has that hEo 'p(k)  i f f  

e-~aHf = e-,~af, 

which means that y~O-p(H) ,  modulo to. Thus, eigenvalues of K correspond to eigenvalues of H. Since eigen- 
values correspond, it is easy to suppose that resonances also correspond. The resolvent of k is what we want to 
continue. 

The approach to resonances by complex scaling or dilation has become quite popular, especially for 
numerical work, where it lends itself to Rayleigh-Ritz calculations. The idea is that when the group of scale 
transformations 

U ( ( o ) f ( x )  = e ~ / 2 f ( e 6 x )  (9) 
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is applied to a Hamiltonian H and ~ is continued to complex values, the spectrum of 

H(~b) = U ( ¢ ) H U ( - d ~ )  

moves around in a tantalizing fashion, revealing portions of the second sheet where one can hunt for poles. 
The curious thing is that the essential spectrum moves, while the discrete spectrum stays put. The resonances 
are identified as the discrete eigenvalues of H(~b) in the unphysical region, For atomic Hamiltonians, the 
essential spectrum rotates about the thresholds ([7], Theorem XIII.10). 

What happens to the spectrum in Stark fields? The question is important relative to the numerical work 
of REINHARDT et. al. (see [2]), who used a Rayleigh-Ritz method to compute eigenvalues of H(¢ ) .  For DC 
fields, the answer discovered by HERBST [2] is rather startling: the essential spectrum disappears for lm ~ ;~ 0, 
and the resolvent of H(q~) is meromorphic in the complex plane! This is quite satisfactory from the numerical 
standpoint. 

For AC fields, we have to dilate K. CHU and REINHARDT [8] use the scale transformations 

U(c~)f(x , t )  = e3~/2f(eex, t). (10) 

For Im 6 ;~ 0, the essential spectrum of H(~b) then turns out to be the whole plane! This is initially rather 
discouraging, but the problem is merely one of gauge. Instead of (7), use the Hamiltonian 

Hi( t )  = (Pl - Eto- l s inco t )  2 + P ]  + P~ + V(x ) ,  

i 0 where Pk = - -  ~-Xk' in which the same field is described in a different gauge. Under the scaling (10), the 

essential spectrum of K1 (6) is 
•2 

O-e(Kl(¢)) = ¢oZ + e-2ilm¢R + + - ~  

where Z denotes the integers and R + the nonnegative reals. Thus, again, the' spectrum of k 1 rotates about 
thresholds (which here are the integral multiples of to), and the entire spectrum shifts by e2/2. 

The Rayleigh-Ritz calculations are left in fine shape, because matrix elements of Kl (¢)  are just those of 
K(d~) in another basis. In fact, since 

K = GK1G* 

for the unitary gauge transformation 

Gf(x , t )  = e~(~x/')si"tf(x,t), 

one has, for real ,;b, 

<K(cb ) f ,g>  = < K I ( ¢ ) G ( 4 D f ,  G(4~)g>, 

where G ( ¢ )  = U ( 4 D G U ( - ¢ ) .  For suitable f ,  G ( ¢ ) f i s  well-behaved for complex ¢.  

It is also possible to treat the perturbation theory in e of the bound states of H = --A + V(x )  satisfac- 
torily from this point of view, but time prevents us from going into that here. Instead, we turn to our second 
problem. 

3.  C H A R G E  T R A N S F E R  

Our second problem is a multichannel scattering problem, one of the simplest imaginable. The picture is 
that of an ion bypassing an atom, and pulling off an electron. I had the name "charge transfer" from a colleague 
in physics. 

To be precise, let ql (x )  and q2(x) be two-body potentials on R 3 for which the operators 

h 2 = - -h  + qj(x)  (j = 1,2) 

each have a single bound state. The Hamiltonian 

H ( t )  = - A  + q](x)  + q2(x - vt) 

on L2(~t~ 3) then describes the interaction of the atom 
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hi = --A + ql(x)  

with a center  of force passing by on a straight-line path with vector velocity v. Thus, we are looking at a 
charged particle passing a one-electron atom in an approximation where the nucleus is fixed and the ion moves 
uniformly in a straight line. There are clearly three channels: the electron may come off bound either to the 
fixed or to the moving nucleus, or may be free of both. We want to do scattering theory. How do we go about 
it? 

The first observation is that the scattering theory for a pair of  evolution generators, K and K0, is essen- 
tially the same as the scattering theory for their propagators, Uand  U0. In fact, it follows from (4) that 

ei~Ke-iC~IC°f(t) = U(t,t + o-) Uo(t + ~ , t ) f ( t ) .  

Letting o- tend to infinity, we find that the (K, Ko) wave operator is 

W+ (K, Ko) f ( t )  = W+ ( t ) f ( t )  

where 

W .  (t) = s-limU(t,s) Uo(s,t) 

is the (U, Uo) wave operator, referred to initial time t. Thus, one can try all the standard tricks of scattering 
theory on the operators K and K 0. For example, one can use stationary scattering theory (Lippmann-Schwinger 
equations and the like) on K and K0. The estimates are a bit different, but the formulas are the same [3,5]. 

From this point of  view, the natural approach to the charge transfer problem is by Faddeev's equations! 
In fact, take 

.0 
K o = - t ~  - A 

and 

where 

and 

K = K o  + VI + V2 + V3, 

V l f (x , t )  = q l ( x ) f ( x , t ) ,  

Vzf(x , t )  = q2(x - v t ) f ( x , t ) ,  

while V3 = 0. Set Kj = K0 + ~ (j = 1, 2, 3). The Faddeev formalism applies directly, and, suppressing the 
trivial V3 terms, one obtains a formula for (K - z) -1 in terms of the inverse of 1 + F(z) ,  where 

F ( z ) =  g2R2(z) 

and Rj(z)  = (Kj - z) -1- The usual sort of primary singularities arise. The channel projections are 

Pj = < , 6 j > 4 , j  ® I ( /  = 1,2) 

where ®1 is the factorization for the coordinates (x,t), while ®2 is for (x',() with 

x ' =  x -  vt, t '=  L 

The whole rigamarole works formally, and the only question is whether one can do the estimates proving com- 
pactness and the like. 

The required estimates are not at all obvious. However, recently Kenji Yajima of Tokyo has informed me 
(private communication) that he has succeeded in proving the desired asymptotic completeness for K by a 
method similar to that outlined here. Details will be presented in a forthcoming publication. 

4. NOTES A N D  REFERENCES 

A number  of authors not explicitly cited here have worked on time-dependent Hamiltonians, some using 
the method but most not. Among them are Davies, E.J.P.G. Schmidt, J. Goldstein, Monlezun, Hendrickson, 
Kuroda, Morita, and Yajima. I have referenced the papers I know in [5], to which the reader is referred. For 
the periodic case, there is a lot of physics literature (with which I am not familiar). Some of it is referenced by 
CHU and REINHARDT [8]. 
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The results on the spectrum of the dilated AC Stark Hamiltonian are mine, and will appear in [6]. 

Finally, I wish to thank Barry Simon, Bill Reinhardt, K. Yajima, Hugh Kelly, Larry Thomas, and Ira 
Herbst for various entertaining and informative converstions. 
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TRANSLATION INVARIANCE OF N-PARTICLE SCHRODINGER 
OPERATORS IN HOMOGENEOUS MAGNETIC FIELDS 

L IV.. Herbst* 
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University of Virginia 
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I N T R O D U C T I O N  

This talk is based on work done some time ago with AVRON and SIMON which appeared in the Fall of 
1978 in the Annals of Physics [1]. My reasons for wanting to talk about this subject are twofold: I find the sub- 
ject interesting and have never talked about it before and, in addition, there may be some interesting physics 
here which deserves to be known. Previous work related to this subject appears in [2-6], where related work in 
solid state physics is discussed, and in [7], where part of the present results were obtained for Dirac Hamiltoni- 
ans. Further references are given in [1] where the reader may also consult for details not discussed here. 

Consider a classical particle of mass m and charge e in a constant magnetic field B. We know from ele- 
mentary physics that the particle will move in a spiral with axis parallel to B. The frequency of revolution, the 
Larmor frequency, is given by 

~o = - e B / m .  

The quantity 

R = v x ~ /co  2, 

where v is the velocity of the particle, describes the location of the particle with respect to the center of rotation 
(projected down into the plane with x = 0). Thus,,the quantity 

e = x ±  - R  

(with x~ = x - (x • B) B / B  2) is the center of the classical Landau orbit (again projected). The quantity c is 
de 

trivially conserved, ~ = O. It is the consequences of this obvious statement or, rather, its analog for many 

interacting particles in quantum mechanics, which I want to discuss. 

1. THE PSEUDOMOMENTUM 

Consider, again, a particle of mass m, charge e in a constant magnetic field B, this time quantum mechan- 
ically. 

The Hamiltonian is (in a particular gauge) 

1 
H o= ( p -  eA)2/2m, p = - i V ,  A = - ~ B  x x .  

If we solve for the quantity e above, we find 

e - -  x z + mv × B /eB  2, v = ( p -  eA) /m.  

The fact that c(t) = ein°tc e -in°~ is conserved follows easily from the Heisenberg equations of motion 

dr ( t )  m - - ' - ~  = ev (t) x B. 

We now define a related quantity which reduces to the momentum when B = 0 : 

k =  ee x B  + p - p 1 .  

Using our formula for e, we find 
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1 k f f i p + ~ e B  xx .  (1) 

This is the pseudomomentum. If we define U(a)  ffi exp (ia • k),  we have 

U(a ) - lx  U(a)  = x - a ,  (2) 

U(a)-~v U(a)  = v. (3) 

Equations (2) and (3) show that U(a) realizes the translation invariance of the system. (Note that H 0 does 
not commute with p even though there is an obvious translation invariance of the physics.) 

The commutation relations of the components of k can be summarized by the formula 

k x k ffi - i e B ,  (4) 

from which it follows that 

U(a) UqS) ffi ~(a,#) U(a + #), 

where o~(a,fl) ffi exp{ie [a x fl].B/2}. Thus, { U(a): a E IR 3} is a projective representation of the translation 
group with a nontrivial multiplier ~. That to is nontrivial means that U(a) cannot be multiplied by a phase fac- 
tor "~(a) so that V(a) ffi "O(a)U(a) satisfies V(a) V(fl) ~ V(a + fl). 

It is also an easily proved fact that if unitaries V(a) satisfy 

V(a)- lx  V(a) ~ x - a ,  (5) 

V(a)-IHoV(,.) = Ho, 

then V(a) ~ ~ (a) U(~) for some phase factor 7. Thus, V's satisfying (5) are essentially unique. 

It is important to understand the structure of the Hilbert space with respect to H 0 and k. 

Let 0 ffi e/[el and suppose B points in the positive z-direction. Define fl = feB[/2 and introduce 

b ffi (Oky + ikx)/2fl 1/2, (6) 

a = l{fl-1/2(p x + iOpy) -- ifll/2(X "l- iOy)}. 

Then, a* and b* are independent creation operators, and we have 

Hoffi ( leBl/m)la*a + l l  + P)/2m. 

We can write, with an obvious notation, 

L2(•3,d 3 x) ffi , ~ -  ~a@~b @ L2(l(,dz).  (7) 

Thus, not only does k± commute with H0, but is completely independent of Ho, in the sense that/4o operates 
o n ~ a  @ L 2 (IR,dz) and k± on~t'b. 

2. N PARTICLES 

We consider a Hamiltonian of the form 
N 

H ~  ' ~ . ( p i -  eiAi)2/2mi + ~.~Vij(x i - x j ) ,  
i - I  i < j  

1 with A j ffi ~-B x x j. The pseudomomentum is then defined by 

N 
kffi ~ k j .  

N 
We find the commutation relations (Q ffi ~[~e~) 

k x k ffi - i Q B ,  

~ ,H]  ffi O. 
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Thus,  k is again a constant  of the motion.  A new possibili ty arises here  which was not  present  with only one 
particle, namely,  when  Q = 0, the components  of k commute .  We discuss this  case first. 

3. Q = 0  

Since the components  o f k  commute  with each other and with H, we can write g :  = L 2 ( R  3~) as a direct 
integral over  the spect rum of k with H decomposable.  It turns out  that  one can use a constant-f iber direct 
integral with Lebesgue  measure:  

3 = J R 3 ~ k d  k, )g'k constant ,  

. o  

U(a)  = f:3ei '~kd3k.  

Proof. We consider the case of N particles in two dimensions ,  with B in a fictitious third dimension.  The third 
d imens ion  can be dealt with as in the case B = 0. For simplicity, we also assume all particles are charged. 

In the notat ion of Sec. 1, we have 

= L2(IR2N, dx2O = "~1® " ' ' ~ X~ N ~ ~ b l  ~ ' ' ' ~ Xb N, 

where 

aj = l l 'n -1 /2("  + iOjpjy) -- i ~ ) / 2 ( x j  + iOjy j )} ,  
2 "-J .vj~ 

b = (Ojkjy + ikjx)/2[3)/2. 

Since k :  is l inear  in b: and bj*, k :  acts in X'~bj. Let a~' = a~bl ~) " ~ ~ b ,  ~:x = ( e lB ) - l k l y ,  Cy 

~ - -  (e2B)-lk2x . One easily verifies the commuta t ion  relations 

[¢x,¢y] = [¢x,ky] = [¢y,kx] = O, 

[~:,,k~] = [¢y,ky] = i. 

Thus,  the vectors f and k = k 1 + • - • + kN satisfy the canonical commuta t ion  relations,  with f the posit ion 
and k the m o m e n t u m .  By van  N e u m a n n ' s  theorem [8], we have 

a~t', = gt~,, ® L2(R2,d2k) 

where f = I @ i V k ,  k = I ~ Me and here  Mk means  mult ipl icat ion by the components  of k .  We let  g"k = 
~'~l ® "" ® "q~l ~ a~" so that  

s; ° S: • = ~ e i k a d 2 k  H =- ' ~  = 2 a~kd2k' U(a)  a~2 ' 2 H(k)d2k" 

N 
R e m a r k .  Note  that H 0 = ~ (Pi - eiAi)2/2mi acts in g~ l  ~ "'" ~ ~a N SO that H0(k)  is independent  o f k  (this 

i=l 

depends on the fact that we have  removed  the third d imension) .  The k dependence of H ( k )  arises f rom the 
potentials V,j, i.e., f rom the dependence  of x~ - x j  on k.  

As a concrete example ,  we look at the two-body problem. We take e 1 = - e2 = 1. Then H ( k )  is uni- 
tarily equivalent  to 

/ t I (k)  = (p - A ) V 2 m l  + (p + A ) V 2 m  2 + kl~/2m + V(r - fl) (8) 

1 
where /~ r (k )  operates in L 2(R3,d3r), p = - i V , A  = - f B  x r, M = rn 1 + m2, kll is the component  o f k  parallel 

t a b  and,O = k  x B / B  2. 

There  are two spectral results which easily follow from (8). 

Propos i t ion .  Suppose V E (L2 + L ~ ) , ,  and let E ( k )  = i n f o - ( H ( k ) )  and 

Iz = m lm2 / (m l  + m2). 
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Then 

(b) lira E(K) ~ IBI/2~ + k,~/2M. 

These results follow easily once the Hamiltonian H 0 (k) = (2mx) -l (p - A) 2 + (2m2) -1 (p + A) 2 + k ~ / 2 M i s  
analyzed. We have ~re~(H0(k)) = [IBI/2~ + k,~/2M,~) and inf cr(H0(k)) = IBI/2~ + k~/2M. Thus, (a) is 
a standard compactness result while (b) follows from the fact that as kz --* ~ ,  V(x - #1) ~ 0 in some sense. 

Part (b) contrasts sharply with the case where B = 0 where E(k) = const + kl~/2M + k~ /2M.  

We now go on to analyze the case where Q ;~ 0. 

4. Q ; ~ 0  

The one-body problem with V = 0, i.e., the case discussed in Sec. 1, has an infinite degeneracy associated 
with the fact that with #t ~= (a~ a ® L2(dz) )  ~ ,~b we have 

H o =  ho ® L 
~v 

We will show that this result is of general validity for N > 1 particles if Q ~ 0. As usual, let k = ~ k~ and B 
i= l  

in the positive z-direction. Then, [k~, Icy] = - i Q B .  If ~ = - Q B k x ,  "0 = ky, we have [~,'0] = i; thus, ~ and "0 
satisfy the CCR. By yon Neumann's theorem, #F = #F 0 ~ L2(R, d~), where ~ is multiplication by ~ in L 2 

d 
(R, d~) and ~ = -i--~-. Since e "H commutes with all operators of the form I ~ B, with B an arbitrary 

bounded operator, we must have e "H = e "h ~ I for some h. Thus, H = h ® I and, again, we have an infinite 
degeneracy. This result still holds after the center of mass in the z-direction is separated out, i.e., for the 
operator H - k l~ /2M , as a bit of thought shows. 

5. THE H V Z T H E O R E M  

In this section, we discuss an analog of the HVZ theorem [9-11] locating the bottom of the essential spec- 
trum for multiparticle Hamiltonians. The first thing one wants to do is find suitable "reduced" Hamiltonians 
which will in general have some discrete spectrum. That is, we must do the analog of removing the center-of- 
mass motion in the case B ;~ 0. For Q = 0, a suitable reduced Hamiltonian is the operator H(k) .  In the case 
of nonzero total charge, we must be more explicit in removing the center of mass motion in the B-direction. 
Thus, consider the operator H - kl~/2M. Xcan be written as #F 1 ® L2(~ ,dk l l )  so that H - k t~ /2M = H ®  I. 
We now apply the same considerations as in Sec. 4 t o / 1and  write #~l = #Fo ® L 2 ( R , d ~ )  so,that 

i f1= H " ®  L 

It is H r which is the right operator to consider when looking for discrete spectrum. 

Given a partition of {1, ..., N} into two nonempty clusters C 1 and C2 we define 

H c ,  c 2 = H - VCl , c 2, 

where Vc~ ' c2 is the sum of all Vii which connect C1 and C2. 

In the following, we assume all V U to be in (L 2 + L~),.  For Q = 0, the operators Hcl ,c  2 (k) are defined 

just as H(k) .  

Theorem. Suppose Q = O. Then 

inf cr~ss(H(k)) = inf{inf ~r (Hc~" C~ (k))}, 

where the infimum is taken over all partitions o f { l ,  ..., N} into nonempty clusters C~' and C~. 

In the case Q ;~ 0, we have 

Theorem. inf O'es~(H9 = inf{inf o ' ( H ~  c~)} 
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I will indicate how to prove the inequalities inf Ores ~ >/ inf {inf (r (Hc~ c~,)}. I will make use of the follow- 

ing proposition, which may be interesting for its own sake, for the case Q = 0: 

s; s; Proposition. Suppose A = , A (p)d 'p on a~f = , ,Tfp dnp where ~p  - ~t" o is independent o f  p. Suppose in 

addition that 

(a) for all 4~j ~ C~ ° (Nn), M~2Aq~ 1 (X) is compact (here, x = iVp and (Me, 2 j ) (p)  = ~h2 (P) f (P ) ) ;  

(b) A (p)- is norm-continuous in p. 

Then A (p) is compact for allp. 

Sketch of  Proof. Suppose "0 E S (1~."), with 110112 = 1. Define the projection P~ on ,~by  

Pnf(P)  = (o,f('))O(,P), 

where (,) is the L 2 (l~.",d"p) inner product, so that (o , f ( ' ) )  ~ ~0.  Without loss of generality, we can assume 
A~b(x) is compact for all ~b ~ C~.  Let A~ = AP n. We first show that A n is compact. Thus,  if4~ ~ C~ ° with 
~b (x) = 1 for Ixl ~< 1, let 4~j(x) = 4~(x/j). We have 

Bj = A4) j (x )P  n 

is compact for each j and, since I I (4~j (x) - 1) 01 [ 2 ~ 0 as j - ,  0% 

lira IIBj - A n [ I  = 0 ,  
j ~  

and, hence, A n is compact. 

Now choose "O with O(P0) > 0 and suppose {Pro} is a sequence of finite-dimensional orthogonal projections 
in ~0  with P~]" I ;  thinking of aqfas ~ o ®  L 2 (R~,d"P), let P m =  P ' ®  L 

I now want to show that, as m ~ co, 

Ilh (po)(1 - e ' ) l l  - 0,  

using the fact that I IA n (1 - Pm) [I ~ 0. If B is a closed ball centered at Po where 0 (P) is strictly positive and 

equals fo in B and vanishes outside B, we have (0 , f ( ' ) )  = '--[J8 0 (P)d'p] fo  = Yf0 and f ~  ydis such that f ( p )  

llAnO - Pm)fll 2= J~llA(p)(t- P')foll2o~/2lo(p)12d"p >1 c fB IIA(p)(1 P " r  ,,2 d ~ 
- -  m / J011 r o  P' 

with c > 0. From this inequality, a bit of fooling with subsequences and an explicit use of the norm continuity 
of A ( p )  easily gives I IA (Po)  (1 - P' ) I [  "-* 0. Since A (p0)P" is finite rank, the proof is complete. 

In discussing the proof of  the HVZ theorem for Q = 0, for simplicity we restrict to the case of N 2- 
dimensional particles in discussing how to show inf ~ess(H(k))  >/ inf {inf o- (Hc~,c ~ (k))}. In proving the 

result, we can assume all V 0 E C ~  by a limiting argument. In the Weinberg-Van winter-equation approach 
[9,10], the major element in the proof in the case B = 0 is to show that an operator of  the form 

A = Vl(z - Ho) - lg2(z  - Ho) -1 ..... Vm(Z - n0) -1 

is compact when A is "connected" in the sense that 

I~I v, = 0 for  E Ix, - xil large. 
i=l i~ j  

In our case, we need the same  result when A is restricted to a fiber Z~k = a~0, i.e., for A (k). Hypothesis (b) 
of the proposition can be shown to be satisfied and, thus, in the notation of Sec. 3, we need only show that 
A ~b (~:) is compact for all ~b E C~ ° (~2),  as an operator On Z'. The function ~b introduces the necessary fall-off in 
the nontranslation invariant variables to give compactness. We leave the details to the reader. 

In the case Q ~ 0, a similar but less complicated procedure gives the same type of result (for details, see 
[11). 
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6. CONCLUDING REMARKS 

The pseudomomentum is a rather elusive object and it is hoped that some clever experimentalist will 
come up with a way of measuring it. In closing, I would like to remark that in radiative transitions, it is the 
pseudomomentum plus photon momentum which is conserved. This can be shown explicitly in a theory where 
the Hamiltonian is to the form 

H = ~ (Pi - e~ At  - A(xi))2/2ml + ~,  ~j(xi - x j) + H0.ra d 
i i < j  

where A(x) is the quantized radiation field and H0. rad is the free energy of the radiation field. Again see [1] for 
details. 

The Proposition in Sec. 5 has a converse. Namely, if A (.) is norm-continuous, then M62A~I(x) is com- 

pact for all ~l,  ~b2 E C~' (R ' ) .  
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ABSTRACT 

We consider a multichannel scattering system composed of N >/ 2 spinless, distinguishable, nonrelativis- 
tic particles, each with configuration space p3  and interacting pairwise by local potentials Vu(1 ~< i < j ~< N) 
consisting of long-range and short-range parts. Each V~j can be chosen, roughly, with the same degree of gen- 
erality as in ALSHOLM [3], when the configuration space in the latter reference is taken as E. 3, Using tech- 
niques similar to those of ALSHOLM [2,3], we have proved for the class of potentials considered that suitable 
modified wave operators f l ~  exist and have a generalized intertwining property for each channel ct such that 
the corresponding bound states have a mild decay property of infinity. For the present class of V,./s, this pro- 
perty is known to be possessed by those bound states corresponding to eigenvalues of the discrete spectrum of 
the pertinent cluster Hamiltonian, or even to arbitrary nonthreshold eigenvalues if in addition the Vi/s are dila- 
tation analytic. We have also proved that the usual range-orthogonality property of the l ) ~ ' s  holds under the 
conditions stated below. The results of this paper can be readily generalized to the case when the single-particle 
configuration space is Rv(v >t 1). 

INTRODUCTION 

It is well known that DOLLARD [1] was the first to define and prove the existence of modified MOiler 
wave operators for both single-channel and multichannel scattering by certain Coulombic potentials, and also 
the first to prove asymptotic completeness for single-channel scattering by pure Coulomb potentials. For 
single-channel scattering by local long-range potentials, ALSHOLM [2,3] obtained the most  general results on 
the existence of modified wave operators defined by iteration, and even more general results were obtained by 
HORMANDER [4] on the existence of some kind of modified wave operators [5]. The existence of such 
operators for a class of long-range momentum-dependent  potentials has been proved in a single-channel context 
[6]. Furthermore, asymptotic completeness has been established in this context for certain local potentials of 
long range [7]. 

Our main purpose is to prove the existence of multichannel wave operators for a wide class of local pair 
potentials. DOLLARD's  proof [1] of the existence of such operators explicitly assumed, for channels other 
than the free channel, a certain property of the pertinent k-body (2 ~< k < N) bound-state wave functions, 
related to their decay at large distances [8,9]. A similar assumption is made in the present paper. 

A published proof [10] of the existence of modified wave operators for multichannel scattering systems 
whose particles interact by a rather general type of long-range local potentials makes no assumptions about 
bound states. Unfortunately, this proof is incorrect. 

In this paper, we consider N I> 2 distinguishable, spinless, nonrelativistic particles, each having 
configuration space ~3 and interacting pairwise by local potentials Vii(1 ~< i < j ~< N),  each of which is the 
sum of a long-range and a short-range part. Our assumptions on the Vjj's are roughly the same as those made 
by ALSHOLM [3] when the configuration space in the latter reference is specialized to ~3 [11]. In particular, 
given 3' E (0, 1], each V/j(x) can be O(Ixl)-~ at infinity, and pure Coulomb potentials are allowed. In See. 1, 
we define modified channel wave operators f ~ .  Our main results, stated in Sec. 1, are as follows: (1) the 
existence of I ~ f  for the assumed class of potentials, for each channel <x whose bound states satisfy a certain 
mild decay property at infinity; (2) a generalized intertwining .property of the f l ~ ' s ,  holding under the same 
conditions assumed for existence; (3) the usual range-orthogonality property of the f / ~ ' s ,  under slightly more 
restrictive conditions on the long-range parts of the V,.j's. 
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Proofs of these results are sketched in Sec. 2. 

1. DEFINITION OF THE MODIFIED WAVE OPERATORS 
A N D  STATEMENT OF THE MAIN RESULTS 

Consider N >/ 2 distinguishable spinless particles whose Hamiltonian operator is given formally by 
N 

- ~  (2mi)-lAx, + ~ Vii, (1.1) 
iffil l<~i<j<~N 

where each Vj(1 ~< i < j ~ N) is a multiplication operator in L2(P` 3) by Vu(x i - x ) ,  with xk ~ P`3 the posi- 
tion vector of the kth particle. V/j (.)(1 ~< i < j ~< N),  denoted by V/j henceforth, is a real-valued function 
on the individual-particle configuration space P`3 of the form 

Vu = V~ + MS. (1.2) 

For each 1 ~ i < j ~< N, the long-range and short-range portions, V~ L and V s, of Vj are real-valued functions 
having the respective properties (L) and (S) stated below. 

(L) for some positive integer m, 

Vi# ~ c m ( p `  3) (1 .3a)  

and 

IDkV#(x)[ ~< const.(1 + [x])-k-v% t 
k = 1 . . . . .  m, (1.3b) / 

at each x E P`3. The first line of (1.3b) applies to all the partial derivatives D k of the specified orders k and the 
"decay exponents" y~ are constants obeying the inequalities 

0 < )'1 < 1, rnyl + Ym > 1. (1.3c) 

1 
Furthermore, if ~- < Yl < 1, they also obey the inequalities 

)tk - -  Yk+l ~ ~tl' k = 1, 2 . . . . .  m - 1, (1.3d) 

when rn >/ 2. 

(S) V s admits the decomposition 

V 3 =  Vj (-1) + V} 2), (1.3e) 

where 

(1 + Ixl) l+ 'V(n fi L2(P` 3) + L~(P`3), (1.3f) 

V (:) E L~(P`3), (1.3g) 

for some constants e > 0 and 2 ~< s < 3yb provided that 2 < 3yl. If 2 >/ 3yl, then V} 2) = 0. 

Since each V1 in (1.1) is such that (1.2), (L), and (S) obtain, it is well known that the differential opera- 
3 2 3 tor (1.1) on Co(P ,  ~ has a unique self-adjoint extension in X = L (P` ~). We denote this extension by H. 

Consider a fixed decomposition D = {C1 . . . . .  C,} of the N particles into n /> 2 clusters C t . . . . .  C n. 

Define a linear mapping x = (xl . . . . .  XN)~(XO,~) of P`3n onto itself, with Jacobian of absolute value unity, 
where XD = (X1 . . . . .  X,)  E P`3, specifies the center-of-mass vector Xl = M/-1 ~ ,  mjxj of the n~ particles in 

J~Ct 

C t ( l =  1 . . . . .  n ) ,  with M / = ' ~ m j .  For n < N, ~ =  (~l . . . . .  /2N-n) E P`3(N-,) specifies the positions of the 
J~c/ 

particles in each cluster with respect to their center of mass, every ~ r ( r  = 1 . . . . .  N - n )  being a linear combina- 
tion of differences xj  - x k such that j and k are in the same cluster. For n t >1 2, we write ~:(t) for the vector 
(/2r) E P` 3(nt-1) whose components ~:r involve only differences of this kind with £ k  E Ct.  

Let H D be the "free" Hamiltonian corresponding to the decomposition D, i.e., the unique self-adjoint 
operator in ~t 'which is the extension of the operator on Co(P`  3N) obtained from (1.1) by omitting all operators 
Vj with i and j in different clusters of D. We write h t ( l  = 1 . . . . .  n )  for the "internal" Hamiltonian of Cl, i.e., a 
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self-adjoint operator in L 2 ( R  3(nt-1)) formally obtained from the operator of type (1.1) involving only i , j  E Ct 

by eliminating the center-of-mass motion. 

Let D be such that either n = N or that n < N and that each ht with nt /> 2 has a nonempty point spec- 
trum. Let a be a channel consistent [12] with D, i.e., a pair a = a D  = ( b o , D ) ,  where bD is empty for n = N 
and is otherwise a set {qJl,n/ >/ 2} of mutually orthogonal eigenstates of hi, one for each I with nl ~> 2. The 
corresponding channel subspace aT'~ is the set of all f~ E X of the form 

f a ( x )  = F ( X D )  I I  q~t (~(/)), (1.4) 
l~l<.<.n, 

nt>~ 2 

where F E L2(I{ 3n) and where the product is replaced by unity for n = N. 

In analogy with the single-channel case, we define modified channel wave operators I I ~  as restrictions to 
~g',~ of the respective operators 

: . ~ ( m ) ~ p  s - l i m  e x p ( i t H ) e x p ( - - i t l - l D - i t r o ,  t , 

when they exist, where P ,  is the orthogonal projection with domain ~ a n d  range ~tf~. If they exist, the opera- 
G ~)" 0, 1,2 . . . .  ) have the form tors  D,t ~.r 

G(r) r (~)~ I (1.5) D,t ~ ~ D,t ~ 

when ~g'is written as 

= ~ c m  ~ ff~are I, 

,~cm = L2(l{3n) being the space of center-of-mass motion and ~rel ~ L2( I13(N-n) )  the space of relative motion 
of the particles in the various clusters with respect to the appropriate centers of mass ( ~¢' ~ a~'~m if n = N). In 

F (r)(r = 0, 1, 2, .) is a bounded self-adjoint opera- (1.5), / i s  the identity operator in ~t~el and, when it exists, o,t . .  
tor of multiplication (r) 3n by £D, t ( ' ) :R ~ R in the momentum-space representation of ~t~,,. Each function ~D,t,r (,)(.) 
is defined recursively by 

F (o) t o~  = O, 
D,t k * !  

r ~ 9 ( e )  = fo' V(sM-'P + vr(vT~)(e))ds, 
r >~ 1, (1.6) 

for P = (Pt . . . . .  P , )  E ~;[3n. Here, M - 1 P  = (Mi-lP1, ., M~-IP,) and V : N  3n ~ [t, is defined by 

V ( Z )  = ~_~ 2 viL(Zr  -- Z,)  (1.7) 
r;~s iECr,i<jEC s 

for Z = (Z  l . . . . .  Z , )  E ~1. 3", For a given r,s = 1 . . . .  n with r ;e s, the rightmost sum in (1.7) runs over the 
set of all those Lj  with 1 ~< i < j ~< N such that i E C r, j E C s, and is taken to be zero if this set is empty. 
The remaining sum in (1.7) runs over all such pairs r,s. 

The definitions (1.4)-(1.7) were motivated by heuristic arguments, analogous to those used for similar 
purposes in the single-channel case [2,13] and in the multichannel case with Coulombic interactions [1]. In 
particular, F ~  I is, formally speaking, the rth iterate of a solution of the equation 

0FD, t(P) V ( s M _ I p  + V F D t ( p ) )  ' 
Ot 

whose analogue in single-channel scattering was solved exactly by HORMANDER [4]. 

We close this section by stating our principal results. 

Theorem 1. L e t  each func t ion  Vij(1 <~ i < j ~ N )  be  o f  the f o r m  (1.2),  with Vi~ a n d  Vi s obeying (L) a n d  (S), 
respectively. Then  II  ~ exis t  f o r  each channe l  a f o r  which the b o u n d  s tates  satisfy the condition 

i E Cl, 1 =  1 . . . . .  n, nt >/ 2, (1.8) 

f o r  s o m e  8 > 0, where  ~ i = X l - x i f o r  i E CI a n d  dE (I) denotes  Lebesgue  measure  in • 3hI. 
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Theorem 2. Under the hypotheses on the V~j 's in Theoi:em 1, the operators fl  ~ have the intertwining properties 

HI~ I c f ~ ( H e  + W,~) (1.9) 

for each channel a for which they exist, where H~ is the restriction of  liD to 7g~ and W e is a bounded self-adjoint 
operator of  multiplication in the momentum-space representation of  ~c,n. Every W~ vanishes when the additional con- 
dition that lim Vu(x) = O for each 1 <~ i < j <~ N is imposed. 

Remarks .  (1) Theorems 1 and 2 are multichannel analogues of, e.g., Theorems 1 and 3, respectively, of [3]. 

(2) Under the hypotheses on the ~ j ' s  in Theorem 1, each ~t(nx >i 2) belonging to an eigenvalue of h I in 
O'disc(h/) decays exponentially in the L 2 sense, thus obeying the condition (1.9) for all 8 > 0 [14]. If each 
V~j is as stated in the latter theorem and is in addition dilatation analytic (e.g., if Vu(x )=  
const Ixl-,(1 ~< i < j ~< N) for some 0 < y ~< 1 independent of i,j [15]) then each (kt(nl >/ 2) pertaining to 
a nonthreshold eigenvalue of h I has this decay property [16]. 

(3) The definition of W e in (1.9) is too lengthy tO give here. 

Proposition 1. For each 1 "<~ i < j <~ N, let Vb obey (L) and, in addition, have the property lim V~(x) = 0. 

Then if  a and fl are two d~fferent channels such that f~ ~ and ~ ~ exist, the ranges of  l~ + (respectively, ~ ~) and 
l~ ~ (respectively f~ ~) are orthogonal. 

A. Proof of Theorem 1 

To prove the existence of each pair O ~  of modified channel wave operators under the hypotheses o f  
Theorem 1, we adopt the following strategy: 

(a) As in [2,3], we prove their existence under conditions stronger, as far as the Vi/s are concerned, than 
those of Theorem 1. It can be shown that the existence of f~,-+ for any a under the stronger conditions entails 
their existence under those of the theorem. 

(b) We reduce the existence problem for each D with n <- N to one no more complicated than for the 
case when n = N (free channel). 

The stronger conditions in question on the V~j's are as follows: For each 1 ~< i < j ~< N, the function 
Vii admits the decomposition (1.2), where V s obeys (S), but where now V~ obeys the condition 

(L') For all 1 ~< i < j ~< N, 

Vj~ E Co~(l~ 3) (2.1a) 

and 

IDkVi~(x)l ~< const(1 + IxD-k-~k.[ 
k =  1,2,3 . . . . .  / (2.1b) 

The infinite set {Yk}ff= a of decay exponents in (2.1b) is nonincreasing and concave, and satisfies both (1.3c) 
and 

Yk--Yk+l ~< Yl, k =  1,2,3 . . . . .  (2.1C) 

We proceed to sketch how to accomplish (b) in the typical case of f~+, where now and henceforth in this 
subsection ~ denotes a fixed channel consistent with a cluster decompostion D, with 2 ~< n < N. l~ + will be 
shown to exist by proving that 

Z,~(t) = d [exp(itH)exp(-itHD - iG(o~))f,] ~e (2.2) 

is in LI(1, oo), as a function of t. In (2.2), f~ is an arbitrary, but fixed element of geof  the form (1.4)~ but with 
Fe E So. Here, S O is the set of all h E ~cm having Fourier transforms /~ E Co~(IR 3") such that supp h c {P z 
(P1 . . . . .  P , )  C R3"[Mi-aP~ ;~ M f l P j .  1 <~ i < j <~ N}. (It is well known that So is dense in ~m-)  
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From now on, we write X o = X and drop the channel subscript in f , ,  F~, and Z~. Standard arguments  
yield the inequality 

Z( t )  ~ ZL(t)  + Zs(t)  + Z's(t) ,  (2.4) 

where 

Zc(t)  = [[[V(X) - V ( t M - l ( 1 / i ) V  x + V~h,  (m-1)~l-~ exp(--iYt)F[I, (2.5a) 

Zs(t) = ~ '  ~ II v,s(x~s + ~j)(exp(-iYt)F)4~l [H, (2.5b) 
r~z~s i ~ C r , i < j ~ C  s 

zk(t) = ~ '  ~ II[v~#(x~ + ~]ij)--viL(xij)](exp(-iYt)F)dPllL2(R3~. (2.5c) 
~ s  ~c,,~<j~c~ 

Here and henceforth,  I I'[[ denotes the norm in ~cm;V(tM-Ip+VF~m.t  -1)) is multiplication by 
V( tM-IP  + V F  (o~-l)(P)) in the momentum-space  representation of ~ m ;  Yt is the self-adjoint operator 

r (m) Yt= tKD + n,t 

in  ~c,~, where K D is the unique self-adjoint extension of Mt-b~x~ on Co~(I130; and 4~ is the product 
I=l  

1-I qJt of bound-state wave functions for the channel a considered, with 114~IIL2(~3(N-.>) = 1. We have also 
l ~ l ~ n ,  

nl~<2 

w r i t t e n X ~ s = X r - X ,  a n d x : - x j = X ~ , + ~ i j f o r i  ~ C , j  ~ C s. 

We now sketch the arguments  used to prove that Z L, Zs, and Z~, are in Ll(1,  oo), and, hence, that Z has 
this same property. 

By a train of reasoning similar, but more complicated than that in [2,3] it follows that 
m--1 

ZL(t) ~ "~ (A~(t) + B~(t) + C~(t)) +O(t )  + E( t )  + R ( t ) ,  (2.6) 
I~1=0 

where A~, B~, CK, D, E, and R are nonnegative functions analogous to ak, bk, d~, e, c, and r, respectively, in 
inequality (5.29), p. 39 of [2]. Here, K is a multiindex (K 1 . . . . .  K3,) of 3n nonnegative integers and, as usual, 

3n 
IKI = ~ ~.  For example, 

i 1 

A~(t) = ~ A(~'~)(t), I~1 = 0 , 1  . . . . .  m -  1, (2.7) 

where the sum runs over all C ,  Cs with r # s(r,s = 1 . . . . .  n). In particular, 

= const Itl ~ f0'(1 + ~,lrl) -<k+2+yk+9 e x p ( - i  ~,,~)H,<K"~>IldX, (2.8) A,, (1,2) (t) 
~I+K2=K 

where k = ]K] = 0 . . . . .  m - 1. We are using the following notation for the  relative and center-of-mass vari- 
ables of the pair C1,C2: 

r = X12, R = (M1 + M2)-I(MIX1 + M2X2), 

X ' =  (R,X 3 . . . . .  X . ) ,  

P = (M1 + M2)-I(M2P1 - M1P2), P = P1 + P2, 

e ' =  (P,P3 . . . . .  P . ) .  

(K1,~¢2) : x In (2.8), H t tr,X') = ( (v l r~ ,~ ) )KI (v2 ro (~ ) )~F) (X) ,  (ViF  (Dr~))K'(i, = 1,2) being multiplication by ~ve,o,t:~ r(m) 

(P) )  Ki in the momentum-space  representation of ~cm- The summation in (2.8) runs over all multiindices K l 
and K2 such that K = r I + K2, in an obvious notation. ~Jt, x is multiplication by (t/2t~X)[Pl 2 + ~t(P,P') in this 
momentum-space  representation, with tz = M1M2/(M l + M2) and ~ t (p ,P ' )  = FD(m,)(P). The remaining func- 
tions A~ (r's) in (2.7) are given by formulas analogous to (2.8) in terms of the relative and center-of-mass vari- 
ables of the relevant pair of clusters. 

We claim that each A~ (r'~) in (2.7) is in L2(1,eo), so that each A K in (2.6) also has this property. Without  
loss of generality, it suffices to consider r = 1,s = 2. To prove that A~ 1'2) EL2(1,oo), one uses estimates of 
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ID~F~I(P)I and I1(1 + h lrl)texp(-i~tt.x)ll  similar to those in [2,3], for suitable multiindices y and suitable 
positive integers r,l, together with interpolation. Here, D ~' is a partial derivative of order 171 with respect to the 
argument  P and h (r,X') a function which, when expressed in terms of X 1 . . . . .  Xn, is in SD. 

Similar arguments show that the remaining functions B . . . . . .  R in (2.6) are also in L2(1,oo). Hence, 
ZLEL2(1,oo). 

To show that ZsE L2(1, co), it suffices to prove that each summand  II. [[LE(R3,~ in (2.5b) has this property. 

Without loss of generality, only the summand  with r = i = 1,s = j = 2 need be considered (renumbering the 
particles, if necessary). Therefore, using (2.5b) and (S), we see that it suffices to show that 

f01 I[vi(r + " r l l 2 ) ( e x p ( - - i Y t ,  1),~ a~') • qSllxdt < 0% (2.9) 

where 

o air (r,X') = F(X) E So 

and 

(1 + Ixl)l+~lVl(x)l ~< const, 

(1 + Ixl)l+~v2 E L2(Rq~3), 

~3 E LS(~3), 

for some E > 0 and some s E (2,3T1). 

One can prove (2.9) for i = 1, and also that Z'sELl(1,oo), by procedures similar, but simpler than those 
employed to show that AK E L2(1, oo). Property (2.9) can be proved for i ffi 2 by using, in particular, the fol- 
lowing elementary estimate. For all "0 E (0,1], k E (0, 1], and t >/1, there exists g E (0,'0] such that 

[[ ( exp ( -  tqdt. x),9 r) (r, .) II L2(Rt~3(n-1)) ~ const t-(1+O (1 + ~. [r I) 1+~, 

where ~ is as above. Finally, (2.9) can be proved for i ffi 3 by using H61der's inequality, the usual Lp estimate 
for exp itA, and an estimate for [l(1 + Irl)%xp(-t~t,1)~[I for k > 0. This completes our sketch of the proof 
of Theorem 1. 

B. Proof of Theorem 2 and Proposition 1 

Theorem 2 can be proved by an approach analogous to that followed in [2,3] (see also [10]). 

Proposition 1 can be established by a method similar to that used in [10]. 
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INTRODUCTION 

The present work is motivated by the paper of DEIFT and SIMON [1] in which the problem of proving 
asymptotic completeness in N-body quantum scattering is reduced to the proof of existence of certain strong 
limits closely related to the adjoints of the wave operators and certain spectral information about the M-body 
subsystems with 2 ~< M ~< N-1.  This "geometric" approach is time-dependent in character as contrasted with 
the time-independent character of the more customary approach involving resolvents. DEIFT and SIMON 
describe the difficulties involved in the application of the latter approach and we refer to their paper for these 
details as well as for references to recent work. 

As of this writing, the existence of  the limits proposed by Deift and Simon has not been proved for any 
N-body quantum system for all energies for N >~ 3, although similar geometric methods have been used to give 
new proofs of completeness in N-body systems below the lowest three-body threshold [2,3]. 

In the present work we will use an analogue of the Deift-Simon approach to sketch a proof of asymptotic 
completeness of three-body classical scattering systems for a certain class of short-range spherically symmetric 
pair potentials. It is hoped that this work will provide some insight into the corresponding quantum problem. 

The only previous results on asymptotic completeness in N-body classical systems with N >/ 3 are those of 
HUNZIKER [4,5] and these are restricted to the case of finite range forces. It seems to be characteristic of the 
many-body classical scattering problem that one has to make strong assumptions--much stronger than in the 
corresponding quantum problem --. in order to prove asymptotic completeness. We will also have to make 
strong assumptions, but we will be able to handle some forces with infinite rgnge in the case N = 3. The 
difficulties arise in the treatment of channels with bound fragments. Such problems do not occur in the case N 
= 2 for which PROSSER [6] and SIMON [7,8] could prove asymptotic completeness for forces falling off at 
infinity faster than the Coulomb force. See also ANTONEC [9]. 

Our approach consists of a generalization of the method of SIMON [7,8] to the case N = 3. We 
encounter a difficulty with bound systems which effectively limits the results to this value of N and spherically 
symmetric potentials. 

Asymptotic completeness can be proved for three-body classical scattering by consideration of the follow- 
ing steps: 

(A) Prove existence and uniqueness of solutions of Newton's equations with specified asymptotic condi- 
tions at It I = oo. 

(B) Prove existence and other properties of the Mfiller wave transformations. 

(C) Establish classical analogues of the results in [1] relating asymptotic completeness to the existence of 
certain limits closely related to the inverses of the M611er transformations. 

(D) Prove asymptotic completeness by establishing the existence of the limits defined in (C). 
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1. PRELIMINARY CONSIDERATIONS AND DEFINITIONS 

We first consider the kinematics. Denote by r~, r~, and m~ (i = 1,2,3) the positions, momenta,  and 
masses respectively of the three-body system. We will consider the three particles with the kinetic energy of 
their center-of-mass removed. Thus let (i,j,k) be in cyclic order, introduce pair notation 
a = ( i j ) , f l  = ( ] k ) , y  = ( k i ) ,  and define x~ as the relative coordinates of the pair a ,  and y~ as the position of 
the third particle relative to this pair. The momenta  x ,  and p~ are conjugate to x~ and y~ respectively. 

We define the free Hamiltonian, 
3 2 2 2 

_ 2~ + 2.°' 
the full Hamiltonian 

3 
H =  H o + ~ ' .V . (x . ) ,  (1.1) 

a=l 

and the channel Hamiltonian H~ corresponding to the pair a 

H , = H o + V , ,  

where ~ and n ,  denote reduced masses. 

Using (1.1) we find the following expressions for Hamilton's equations relating to the coordinates 
y~, p~, x~, and r~: 

n . L  ( t )  = p .  ( t )  

L(t )  = _ o _ ~  Vo(xo(t)) - Z F~,,(x~(t)) 
oy~ 0 ~  O;~a 

/xa~ a (t) = K s (t) 

--0 3 3 
k,~(t) = - ~ - - ] ~  V~(xa(t)) ~- ~'.G~a(xt3(t)) (1.2) 

~ f l - - 1  = ~ = 1  

where xt~,fl#~ , are to be expressed in terms of x~ and y~, and the dots denote differentiation with respect to 
time. 

We will consider solutions of (1.2) which are asymptotic to "free" solutions in the limits t~_+co For the 
case in which all particles are asymptotically free, i.e., for which no stable bound systems exist in these limits, 
the corresponding solutions are 

p~O) 
y~°)(t) = y~(°)(0) + t (1.3) 

net 

X~(t) = X~0)(0) + K~(0) t , ~  (0) = 0 = t~  (0). 

SIMON [7] considered this case for N>/2. 

We will generalize this approach to N = 3 where not all particles are asymptotically free. Thus, assume 
that the pair c~ is bound and that the third particle does not interact with it. The Corresponding solution is 

n(0) 
y~0)(t) = y~0)(0) + v~ t, f j~o)= O, 

na 

~oi~ol(t) 0 0x~O) V~(x~ °)(t)) - G.~(x~O)(t)) 

r~ °/(t) = tz~i~ °) (t). (1.4) 

With our assumptions on the potentials and forces (see below), the phase space of the system is F = ~12  

and we will also consider the subset 

F ' =  {(y,p,x,r)EF:p,~ ;~ 0 , x , ~ 0  for some a}. 

It is clear that F and F' differ by a set of Lebesgue measure zero. 
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The concept of bound system will be defined by linking it to boundedness of trajectories in configuration 
space. This is possible because it follows from (1.1), our assumptions on the potentials stated below, and con- 
servation of energy that the momenta  are bounded functions of time. 

Thus,  let B± denote the measurable subsets of F such that 

sup( ly . ( t ) l  + I x . ( t ) l ) <  oo 
t~0 

respectively, for all a where (y~(t),x~(t)) are solutions of (1.2). The subset B = B+N B_ is defined to be the 
region of phase space corresponding to bound systems. For N = 2 the corresponding subsets b± of the two- 
body phase space are defined by 

b+ = suplx~(t)  l<oo (1.5) 
t~o 

respectively. 

Solutions of (1.2) define a self map F (t) of F: 

F(t):(y(O),p(O),x (O),r(O) )~(y(t),p(t),x(t),~(t) ) (1.6) 

called the Hamiltonian flow. It is desirable that this flow be complete, i.e., that it be defined for all tE (-0% oo). 
In this case F(t) is a one-parameter group of diffeomorphisms of F and the map (1.6) is a canonical transforma- 
tion. The completeness of the flow is the classical analogue of the essential self-adjointness of the correspond- 
ing Hamiltonian in quantum mechanics. For scattering solutions this completeness follows from the existence 
and uniqueness of solutions of Newton's  equations discussed in Sec. 2. The completeness of the flow for two- 
body bound systems can be proved with our assumptions on the forces stated below. See also the remarks on 
this point in [4]. 

We will consider the following class of potentials and forces. 

(I~) V, is a continuously differentiable spherically symmetric bounded function which approaches zero as 
Ix°l - .  oo. 

(II,) The forces F~, (/3 # a)  and G ~  are conservative as in (1.2). They are locally Lipschitz on R 3 with 

suplFa~,(x)l < o o , s u p  IG~,~(x)l < 0% 
x C R  3 xE]R 3 

i.e., given a compact subset D c ~.3 there exist positive constants D~,~,D,~ (depending upon D) such that 

I F ~ ( x )  - F , . (y ) I  ~< oAolx-yl , f~ ~ ~, 

I G , . ( x )  - G , ° ( y ) l  ~< O~°lx - yl  

for all x ,yED.  

(III~)For some R 0 > 0  and positive constants A~,A~,Be~,B~ w i t h / 3 # a ,  

[G~.(x~)l .< A~ .exp( -B~ . lx~ l )  if Ix~l >/R0.  

( IV. )For  some R l >  0 and positive constants C~., C~.,K~a, K~.withfl~a, 

[F,~(x) - F~.(y)I  ~< C~exp( -KA~r ) lx  - Yl, 

IG~.(x) - G, . (y) l~< C~exp(-Krj~r)lx - y[ , i f  Ixl, lYl t> r >/ R1. 

Conditions (II~)-(IV~) are similar to those used by SIMON [7,8] except that we have imposed exponential 
fall-off at infinity. This strong decay at infinity is not needed in the two-body case. 

Spherical symmetry is imposed because our proof of asymptotic completeness requires that the two-body 
bound systems be completely integrable. Two-body systems with spherically symmetric potentials are the most  
important class of three-dimensional integrable systems. 
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2. EXISTENCE AND UNIQUENESS OF SCATTERING SOLUTIONS 

Theorem 2.1. Assume (Is)- ( IV ~) for all a.  Then for given solutions (y~(°)(t), x~°)(t)) satisfying (1.3) or 
(1.4), there exist unique functions (y~(t), x~(t)) satisfying (1.2) with 

lim Itl'{lu.(t)] + [fi.(t)l + Iv.( t) l  + I~.(t)l} = 0 (2.1) 

for any non-negative integer n, where 

~ , ( t )  = y . ( t )  - y~(°)(t), ] 
%(t )  = X,~(t) -- X(0)(t) ' ] (2.2) 

A proof for the asymptotic conditions (1.3) and n = 0 is discussed in [7]. The only essential difference in 
the method of proof is that we eliminate the kinetic energy of the center-of-mass whereas SIMON does not. 
With our more restrictive assumptions we obtain (2A) for the stated range of n. 

Our proof in the case of the asymptotic conditions (1.4) makes use of the usual existence and uniqueness 
theorems for ordinary differential equation and of fixed point, theorems to show that the mapping (in the case 
of the limit t"* - co) 

[ Iz  

I :~l.2(t)l= f_' dsf_~d, [ l[G.,~(x~°'(t)+vo(t))-G,~,~(x~°)(t))+ ~oG, s(Xa(t)] (2.3) 

has a unique fixed point. In addition to the statedconditions(I~)-(IV.), our proof of existence and uniqueness 
of fixed points requires the additional condition that D.~ be small in comparision with B~s and B#. for/3 ;~ a.  

If G.s is differentiable, this is seen to be a restriction on the magnitude of ~ -  G.s as compared with the 

asymptotic rate of decay of Ff~. and G~.  Unfortunately, we do not have the space to give a precise statement 
of this condition here. A similar expression with different limits ofintegration is used for the study of the limit 
t ~ + oo. In the proof we use a different metric space than in the corresponding two-body problem [7,8,11] or 
for N > 2 with the asymptotic conditions (1.3) [7]. 

3. EXISTENCE OF WAVE TRANSFORMATIONS 

The existence of the M~ller wave transformations express the fact that F(t)  can be approximated by 
simpler flows in the limits t ---,+ oo. Thus, just as the flow F(t)  is associated with solutions of (1.2), the "free 
flows" F o (t) and F,~(t) are associated with the solutions (1.3) and (1.4) respectively. I n  particular, F~(t) pro- 
pagates the pair a according to the internal evolution of the bound system while the third particle travels freely. 
It is clear that Fo (t) is complete whereas the completeness of Fs (t) can be proved as we have indicated in Sec. 

1. 

We define the following mappings for given as, bd, %,d~ ;~ O, x~°)(t), and r(°)(t) :  

[l ~" (a,, n~bs, c,~,/z,~¢l~ ) = (y,~ (0), p,~ (0), x~ (0), K,~ (0)) 

1) + (a~,n.b~, x~°)0),'K (°) (0)) = (y. (0), p. (0), x~ (0), Ks (0)), 

i.e., mappings from the asymptotic data at t =  -oo to the interacting solutions evaluated at zero time. Similar 
mappings fib-, f~=- can be defined for asymptotic data specified at t = + ~ .  

Let F=CF'  denote the product of the phase spaces of the bound pair and the free particle (with non- 
vanishing momenta). We have 

Theorem 3.1. Assume (I~)-(IV~) for alia as well as the restriction on D ~  noted in Sec. 2. Then: 

(a) I I~  = lim F(-t)Fo(t) (3.1) 
t ~  

uniformly on compact subset of  F', 

l l ~ - -  lira F(t)F,(t) ,c~ = 1,2,3, (3.2) 
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uniformly on compact subsets of  F~,. 

(b) F ( t ) f i f  = f i f  F~(t), a = 0,1 ,2 ,3 ,  

for all finite t. 

(c) f i f  ,a  = O, 1, 2, 3,are measure preserving. 

(d) The ranges o f  f i+ and fi~(resp, f iZ  and fi~-) are disjoint for ~ ;~/3, a,/3 = 0, 1, 2, 3, 

The existence of the limits for fl  ~ has been proved in [7] under different assumptions. The existence of 
f l ~  for a ;~ 0 is proved in a similar fashion but is more complicated in its technical details. The idea is that 

f ib ( t )  =- F ( - t )F~( t )D~ ,  

where D~ denotes a compact subset of  F~, can be written in terms of an integral mapping F(t )  which has the 
same integrand as (2.3) but different integration limits. (See [7] or [8] for the corresponding procedure in the 
two-body case.) 5r(t) has the property that it is a contraction on our metric space for finite t and converges to ~: 
uniformly as t ~ - co. The existence of f i g  follows essentially from these properties and (2.1). 

The assertions (b)-(d) can be proved from (a), Theorem 2.1, and some well-known properties of the 
flows. 

4. CLASSICAL VERSION OF THE DEIFT-SIMON APPROACH 

We now describe a classical version of the DEIFT-SIMON analysis [1] which reduces the proof of  asymp- 
totic completeness to the proof of existence of certain limits closely related to the inverses of the M~tler 
transformations (3.1) and (3.2). A sketch of an existence proof of  these limits will be given in Sec. 5. 

We define 

a~(m,R)  = {(y~,x~): Ix~l ~< m[ya] 1/3, ly~l /> m -1R} (4.1) 

and consider smooth functions J~ ~ C ~ (R  6) satisfying 

0 ~ < J , ~ < l  

supp J~ C.  Q~ (2,R) 

J~ ffi 1 on Q,(1 ,R)  (4.2) 

for a ~  0. The corresponding function for a = 0 is given by 
3 

J0 ffi 1 -  ~j"~ J,~. (4.3) 
affil 

The relations (4.1)-(4.3) are the same definitions as in [1]. We do not change the m o m e n t u m  part of phase 
space. Intuitively, J~ is a function that is large in regions where the particles comprising the pair a are close 
together compared with their distances from the third particle. 

Lemma 4.1. Assume (1~) and (II~). For a ~ 0 we can find T > 0 such that 

(a) JoF~(t) = 0 = (1 - J~)F,~(t) 

for I t [ >1 T on compact subsets of  F~ where/3 ;~ a with/3 = 0 allowed. 

(b) J~Fo(t) = 0 = (1 - Jo)ro(t) 

for It] >/ T on compact subsets of  F'. 

The proof uses the definition of the flows, of  J~, and (1.5). 

Note that in the presently considered classical case the limits in Lemma 4.1 become zero in finite time. 
This does not  happen in the quantum case because of the spreading of wave packets. 

Using the fact that the ranges of the wave transformations are disjoint by Theorem 3.1 (d) we say that the 
scattering system is asymptotically complete if 
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3 3 

F ~ B I,.,I Ran lI ~+ ~ B U Ran/ I  2 
a = 0  ~ 0  

where we use the notation X ~ Y for subsets of  F such that X = Y up to sets of Lebesgue measure zero. 
(More precisely, the symmetric difference X I,.J Y - X ~ Y has measure zero.) 

The next result relates this concept to the existence of certain limits W~.  

Theorem 4.1. Assume that asymptotic completeness holds. Then the limits 

W f  = lim F ~ ( - t ) J ~ F ( t ) , a = 0 , 1 , 2 , 3 ,  

exist in the topology of  uniform convergence on compact subsets of  F'  - B. Also, 

W f  f ~ F ~  = 8~F~  (4.4) 

where F0 is defined to be F'. 

The proof of existence of W f  uses Lemma 4.1 and is similar to that for the quantum case [1]. The rela- 
tions (4.4) then follow from the group property of F(t )  and Lemma 4.1. 

In the other direction we have 

Theorem 4.2. Assume that the limits W~ exist for a = O, 1, 2, 3 and suppose that (I~)-(IV~) hold for all a. Then 
the three-body system is asymptotically complete. 

The proof goes essentially as in the quantum case. The assumptions (I~)-(IV~) are imposed so that we 
can use SIMON's result that the two-body subsystems are asymptotically complete. Our assumptions are 
stronger than necessary for this task, and we could just as well impose SIMON's conditions. 

In the quantum analogue of Theorem 4.2 proved in [1] one finds the additional condition that the 
Hamiltonian of each two-body subsystem must  have no singular continuous spectrum. A similar assumption is 
not needed in the classical case because such phenomena occur on sets of  measure zero. 

5. ASYMPTOTIC COMPLETENESS 

We now sketch a proof of  asymptotic completeness of classical three-body systems by discussing the 
existence of the limits W~.  

Theorem 5.1. Assume (la)-(IV~ ) for all pairs a as well as the restriction on D~a noted in Sec. 2. Then the three- 
body system is asymptotically complete. 

One sees from Theorems 4.1 and 4.2 that if W + exists then it is the inverse of  f l  +, so that it is sufficient 
to consider solutions of Newton's  equations with asymptotic conditions corresponding to the flow F~ (t). 

Let D denote a compact subset of  F' - B. In order to prove the existence of W~- it is sufficient to prove 
the existence of the limits 

lim F o ( - t ) F ( t ) D  (5.1) 
t ~  

lira Fo(-t)J~F(t)D,c~ = 1, 2, 3. (5.2) 

The appropriate solution of Newton's  equations is 

y,~(t) = a,~ + bat + u~(t) 

p , ( t )  = n~(b~ + ~ ( t ) )  

x,~(t) = ca + d,~t + va(t)  (5.3) 

K~(t) = ~ ( ~  + ~(t))  

with a~,b=,%,d~;~0 where u ,  and v~ satisfy (2.1) for the limit t ~ o o .  Using the property (1.3) of  the flow 
Fo(t) and (2.1) we find 
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lim Fo(-t)F(t)(y~(O),p~(O),x~(O),r~(O))= ( a~ ,n~b~ ,%, /x~) .  

The result for the limits (5.2), 

lira Fo(-t)J~F(t)D = O, 
t ~ - ~  

arises from the fact that J~ = 0 unless 

Ix~(t) l<~21y~(t)l 1/3 

and 

ly.(t)l>~l/2 R for some R > 0 .  

One shows from (2.1) and (2.2) that the first inequality fails for sutficiently large I tl. 

For W + with a ;~0  we consider the solution 

y,~(t) = a~ + b ' t  + u,~(t) (5.4) 

p,~(t) = n~(b~ + ti,~(t)) 

x~(t) = x~(t) + v~(t) 
K,~(t)'=/z~(~0)(t) + ";'~(t)). 

From (1.5) and (2.1) we see that the inequalities 

IxA°)(t) + v.(t)I~< I~; + I~t + u~(t)11/3 

and 

, >~ I~ + b;t+u~(t)l~.R for some R > 0  

are valid for sufficiently large It I, and consequently J ,  = 1 for such t. Thus,  we only have to consider the 
existence of the limit. 

lim F~ (-t)F(t)D. (5.5) 
t ~  

We have previously alluded to the fact that the flow F~(t) factorizes as the product of  two simpler flows 
-- that of  a free particle and that of the internal flow of a two-body bound system. The convergence of that 
part of (5.5) involving the flow of the free particle is proved in the same manner  as that for the limit (511) with 
the solution (5.3). For the bound part we use (5.4) to express this part of the flow as the sum of two terms --  
the first involving the solutions x~°)(t) and K~°)(t) of the bound system and the second depending upon the 
quantities v~(t) and ~',(t) defined by (2.2). For the first set of terms it is seen that we have to have control 
over the internal flow of the two-body bound systems. In order to achieve this we use the fact that a two-body 
bound system with a spherically symmetric potential is completely integrable. (This is the main reason for 
assuming that the potentials are spherically symmetric in the present work.) We then make a canonical 
transformation from the coordinates (x~ °)' K~ °)) to the action-angle variables (I~, w~) in terms of which the flow 
of a bound system is 

(I~, w~)--'(I~, w~ + v~t) 

where ~,~ are the associated frequencies. After the flow is evaluated in these variables we transform back to the 
original ones. 

By collecting the preceding results one finds 

W + (y,~ (0), p,~ (0), X.~(O),K,~(O)) = F,~ (T)-l(a~ + b~T,n,~b~,x,}(°)(T),K~°)(T)). 

6. NON-EXTENSION OF THE RESULTS TO N > 3 

In conclusion we make a remark concerning the lack of extendability of  our results to N-body systems 
with N > 3. 

Note that the proof breaks down for channels  which contain bound systems of three or more particles. 
The reason is, of course, that we make essential use of the fact that two-body bound systems with spherically 
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symmetric potentials are completely integrable. 
tems in three dimensions are harder to find. 
generic [12]. 

For bound systems of three or more particles, integrable sys- 
Stated more precisely, integrable Hamiltonian systems are not 

It is interesting to note that our proof breaks down for the same types of situations for which HUNZIKER 
[4] has trouble. That is, the bound system stability assumption formulated by Hunziker is satisfied for two- 
body systems with spherically symmetric potentials [4]. In fact, the details of our proofs of Theorems 3.1 and 
5.1 require the use of this stability condition in an explicit manner. For bound systems of three or more parti- 
cles the validity of Hunziker's stability condition remains an open question for forces with infinite range. 
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ABSTRACT 

A multichannel relativistic scattering theory can be formulated in a manner  similar to the nonrelativistic 
multichannel theory. The mass operator plays the role of the Hamiltonian of the nonrelativistic theory. The 
problems of existence and completeness of wave operators are formally the same. Poincar~ invariance and clus- 
ter separability of the S operator impose nontrivial restrictions. The purpose of this paper is to review the 
known solutions for the case where the number  of constituent particles is bounded and explicit representations 
for the physical one-particle states exist. 

The formal framework of a relativistic multi-channel scattering theory is similar to that of the nonrela- 
tivistic theory. The formulations of EKSTEIN [1] and HAAG [2] point to a two-Hilbert space description [3-7] 
in which the identification operator -- introduced into the mathematical theory by KATO [4] -- is realized in 
terms of bound state wave functions, [1,3] or equivalently in terms of creation operators of physical particles 
[2,8]. Let S rbe  the Hilbert space of the states of  the interacting system and ~ the Fock space of free parti- 
cles that occur in the initial and final states. In a relativistic theory, we require unitary representations of the 
Poincar~ group U(a, A) and Uf(a ,A)  in Staand ~'y respectively. The generators of the infinitesimal transfor- 
mations are self-adjoint operators H,P  for time and space translations, J for rotations, and K for Lorentz 
boosts. The generators H,P ,  and J have the physical significance of energy, momentum,  and angular momen-  
tum. The mass operator (rest energy) M i s  defined by 

M: = ~ -  p2. (1) 

I will assume in the following that M is positive and has a bounded inverse. Zero-mass particles are thus 
excluded-. The commutation relations of the generators are 

[Pi,Pj] = [P,H] ~ O, (2) 

[Jp,Jq] = i~,, ¢mrJr, (3) 
r 

[Jp,Pq] = i •  EpqrP r, [Ji,H] = 0, (4) 
r 

[Jp,K#] = i ~  emr K r, (5) 
r 

[Kp,Kq] = - i ~  ¢pqr Jr, (6) 
r 

[Kp,Pq] = iSpqH, [ K , H ]  = iP r. (7) 

We will also need the NEWTON-WlGNER position operator X, defined as a function of the generators by [9] 

1 - P x ( H J  + P x K )  (8) 
X: = ~- (H-1K + K H  -l)  M H ( M  + H)  " 

which satisfies the canonical commutation relations 

[Xr,X s] = O, [Xr,P s] = iSrs, 

as a consequence of (2)-(7). It follows that K can be written as a function of P ,X,M,  and j ,  

j: = J - X x P ,  

K = I ( H X  + X H ) - ] × P ( M  + H)  -1. 

(9) 

(10) 

(11) 
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The eigenvectors of M define a unitary mapping q~l of the one particle subspace ~g'/l C a~C't onto the 
one-particle subspace ~¢'1 C ~.  The identification operator (I) needed for the formulation of the initial condi- 
tion in the time dependent scattering theory, 

lim [l~(~) --(1)e-'Mr~xll = 0, (12) 

can be defined by tensor products of the (bl's such that 

w-lira e~Mf~*~ e -iMf = 1. (13) 
~ ± ~  

The wave operators II ± are then defined by 

~ ± ( M ,  dp,Mf): = s-lira eiMrdp e -~ s "  (14) 

and the scattering operator S is 

S :=O+*I I  . (15) 

The mathematical problems of existence and asymptotic completeness of the wave operators are similar to 
those of the nonrelativistic theory. The new features are related to relativistic invariance of S ,  

Uf(a, A) S U f  1 (a, A) = S, (16) 

and the cluster-separability requirement which assures the independence of spatially separated scattering events. 
Neither property follows automatically from the existence of the wave operators (14). The dynamics of the sys- 
tem is specified by the generators, H, P,  J ,  K,  and the identification operator (I). The problem is to satisfy 
sufficient conditions to be imposed on these operators such that S is Poincar~-invariant and satisfies the 
cluster-separability requirement. The purpose of this paper is to review the known solutions for directly 
interacting particles [3,10], as well as the suggestion that no solution exists [11]. 

The following equivalence relations [3,4] play a key role. 

Definition. Two d~,namical systems {M,(1)} and {M',~'} are called scattering-equivalent if S(M, cb,Mf)= 
S (M; d~',My). 

Lemma 1. Let ep E L ( ~ f ,  ~ )  and (I)' E L ( ~ . ,  ,~f) be two identification operators. The limiting relation, 

s-lim (~ - ~')e  'Mr ~ O, (17) 
- r ~ ± ~  

is necessary and sufficient for the identity of the wave operators: 

±.(M, 4 , M  s) = f~ ± (M, (~',Ms). 

Lemma 2. For any two unitary operators A E L (~fi, ~fi) and By E L ( ~f ,  a%ff), 

f~ ± (M,A d~Bt,Mf) = A 11 ± (A t MA, ~ ,BTMfB f) B}. (18) 

Corollary. I f  [Bf,Mf] = 0, and [S, Bf] = 0 then {M,A ~ B]} and {A*MA, ~1 are scattering-equivalent. 

Lemma 3. I f  {M', (P'} and {M,(1)} are scattering-equivalent and the wave operators 11 "~: = f~ ± (M; ~ ' ,Mf)  and 
f l±:~f~ ± (M, cb,Mf) are complete, then W: = ll'+ Ut t+ = l~'_fl *_ is unitary and the operators Web and ~ satisfy the 
equivalence relation (17). 

Lemma 4. The wave operators ~t ± (M, ~ ,Mf)  are Poincard-invariant, 

U(a ,A) I2±  = ~ ± U f ( a , A ) ,  (19) 

if  and only if 

s-lim ( U(a, A)(I) U71(a, A)-(I)) e -'MsT = 0. (20) 

On physical grounds, we should expect 

~ ± (H,~p,Hf): = s-lira ei'~'(1) e-~Hst= ~ ± (M, dp,Mf). 
t ~ ± ~  

(21) 
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Theorem 1. I f  I2 ± (M,~P,Mf) (or f l  ± (H, dP,Hf) ) exists and is Poincare'-invariant then fl  ± (H, dP,Hf) (or II ± 
(M, ~ , My)) also exists and they are equal, 

n ± ( H , ~ , H : )  = n ± ( M , ~ , M : ) .  

From the invariance of II ± (M, dP,My), it follows that 

HI~ ± (M, ~ ,M:)  = D ± (M, ~ ,Mf )H: .  (22) 

It can be shown that the limit 

sqim (¢ - f l+)e  -iHft= 0 (23) 

follows from 

s-lim (alp - II ±)e -iM: = 0, (24) 

using Hf  = x/1 + Q} My, Q ~  = P f M f  1, and the dominated convergence theorem [12]. 

The existence of the wave operators II ± (H, ~,Hy) can be proved by an obvious generalization of Cook's 
method [13]. 

Theorem 2. Let 

V: = H~ - ~Hf. (25) 

l f  there is a dense set D C D ( H f )  such that for t > t o a n d x 6 D  the conditions 

~ e ± i H / x E D ( H ) A c b D ( H f ) "  I (26) f0~ll Ve±iH/xlldt < 0% 

are satisfied, then I~ ± (H, ~ ,Hf )  exist. 

It might be tempting to assure the invariance of the wave operators by requiring Poincar6 invariance of ep, 

U ( a , A ) ~ U f l ( a , A )  = ~ .  

But this is possible only for trivial theories, since then M ~  = epMf, fl :~ = ¢p, and S = 1. From (11), it follows 
that (19) is satisfied if 

P(I) = qbpf, (27) 

JcD = c~j :, (28) 

and 

X¢~ = ~Xf. (29) 

Theorem 3 (SOKOLOV [14]). Define 

Q:=PM -1, R:=XM, (30) 

= e x p { l ( x . P  + P.X)ln M} (31) 

and 

(I~s: = ~t(1)~f. (32) 

Then dp~ and ~ are scattering-equivalent. I f  dp satisfies (27)-(29), then it follows that 

Qcl, s = CD sQ f, (33) 

Rob s = dPsR f, (34) 

K tY~ s = aD s K  f , (35)  

j~, ,  = ¢~:. (36) 
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The scattering equivalence of ~ and ¢ follows from Lemma 2. Equations (33) and (34) follow from 

P~ = ~PM -1, X~ = ~XM, (37) 

(27), and (29). Equation (35) follows from (11), (30), (33), and (34). 

For a mathematical formulation of cluster separability, consider two channels a and ft. Let D be a parti- 
tion of the particles in a and /3 into two disjoint subsets {al, a 2} and {/31,/32} respectively. 
( a  1 t.J ot 2 = or, ot 1 N ot 2 = 0 ,  fl  I U/3  2 = B,  fl  1 f"l/3 2 = O ) .  By definition of Hf, the channel subspaces ~,f,, and $~0 are 
tensor products 

~r0 = ,'~:o~ ® ~¢0~, (38) 

and the momentum in each channel is additive in the clusters, 

P f ' ~  = P f ~ t  + P f '~2 '  

P f ~  = P T 0 t  + Pro2" (39) 

Let 

where ~f~ is the projection onto Xf~ and define 

T, ~ o  (a 1, a2) = e -i(P f~l'al+P f~2"a2) 

The separability requirement for S can be stated in the form 

w-lira Too(a I a2)So,~T~l (al,a2)=So ~ ®S O ~2 
la l~a21~ ~ 1 I 2 

for all channels a and/3 and all cluster decompositions D. The strong limit 

s-lim (SOY/ -S ,g f  ~®S~:,)  T~o(al ,a 2) = 0 
[al_a2[~ ~ ~ 

follows from (42) [3]. The dynamical history of the system is specified by 

alP(t): = e ill' ~Pe - in f .  

We are, 

(40) 

(41) 

(42) 

(43) 

w-lim T~D(al,a2) (egt (t')dP(t) )t~,,T~l (al,a2) = (¢ t  ( t ' ) ¢ ( t )  ),l~]®(dPt (t ')d)(t) )02~2, (45) 
la l -a2l--~ 

uniformly in t' and t for all D, a, /3.  It follows that 

w-lim T~D(a l ,a2 ) (ap t ( t ' ) I I±)~T~(a l ,a2 )  = (~b*(t')IZe)01,q® (¢*(t')12±)02~2. (46) 

Equation (42) follows from (46). 

For N particles, ~ '  = a~f, and ¢ = 1, MUTZE [11] has shown, assuming (27)-(29), that the right hand 
side of (42) is unity. The conditions imposed are obviously too strong and they are not necessary. The key to 
satifying both the apparently imcompatible relations (29) and (45) is found in Lemmas 1-4. It would be 
sufficient to show that for every cluster decomposition D there is a scattering-equivalent ~b o which satisfies 
(45). 

3 
For three particles in Y(' = ® ~fl t~), it is possible to satisfy (27)-(29) and (42) by the following construc- 

i=1 
tion [2]. Assume the mass operator M12 on ,~(1)® v~[2) for particles 1 and 2, is known. It is then possible to 
construct a mass operator M12,3 on Hfor  the three particle system in which particle 3 is a noninteracting specta- 
tor such that 

S12,3 = S]2® 1 (47) 

while 

I1±12,3 ~ fZ±12® 1 (48) 

(44) 

therefore, seeking a condition on ¢ ( t )  which is sufficient for the validity of (42). Such a condition is 
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Let Mo be the mass operator of the noninteracting particles and define 

V12:  = M 1 2 , 3  - Mo, 

VI3: = M13,2-  Mo, 

V23: : M23,1 - Mo. 

For 

(49) 

M = M o + V12 + V13 + I:23, (50) 

one obtains an S operator which satisfies (42). It is possible to construct operators qbo, equivalent to q5 by 
Lemma 2, for which (45) holds. This procedure could not be generalized to more than three particles. 

For N particles, SOKOLOV [10] has proposed a dynamics in which the identification operator is Lorentz- 
invariant and the interactions are introduced into the energy-momentum vector in such a manner  that the 
Lorentz invariance and separability are manifest. The commutativity of the components of P~' requires n-body 
interactions for all n ~< N. They are generated recursively for successively increasing N. 

N 
,,~ the Hilbert space of N particles oT't:: = i~l ~ j )  and assume that K and J do not depend Consider for 

on the interaction. 

K ffi Ko: = 
N 

Ki ® 1, (51) 
iffi 1 J 

N 
J = Jo: ffi ~ J,® I. (52) 

iffil 

For the energy-momentum vector P~ we assume a form that is additive for separated clusters, 
N 

P~ = Po" + ~ uL (53) 
n~2 

where 

N 

Po" ffi ~. P,~ ® I, (54) 
iffil 

and each n-body interaction term U# has the form 

U :  = ~ V,~. . . ,® 1, (55) 
i l < i 2 . . . i  n 

where V~ . is a short-range n-body interaction defined on @ oT'l (0 independent of N. By definition, it van- t 1 . . t  n 

ishes for any division of the cluster i 1, .. :,4 into separated fragments. Let D k be a partition of the N particles 
into k disjoint subsets {~r 1 . . . . .  crk} and define 

k 
U#(Dk): ffi ~ ~ Kt' ® 1. (56) 

t l . . . t  n 
j ~ l  i l  < . . .  in~O- j 

Obviously, 
k 

P"(Dk)  ffi Po ~ + ~F. U# (D k) ffi ~.~ P : ,  (57) 
n jffil  

where Pj is the energy-momentum vector of the jth cluster. Each V~...io transforms as a four-vector. With 

k 
i ~ P  j .d j  

TDe (d 1 . . . . .  d k) := e jr1 (58) 

we have 

iP#a~ - 1  e i P g ( D k ) a #  
s-lim T o (d 1 . . . .  dk)e Z[~ k (d 1 . . . . .  dk)  = , (59) 

rnin d i ~ l  j ~ k 

For K , J  , and P~' defined by (51)-(53), the identification operator dp defined by tensor products of dPi's is 
Lorentz-invariant, 

KdP = qbKf,  Jdp = qbJf. (60) 
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The V~... ~ are related to each other by the requirement that different components of P commute, 

[P~',W] ~ O. (61) 

For N = 2, it is easy to satisfy (61) by 

v ~l~= 0o ~ v2, 

where v 2 is Lorentz invariant and commutes with Q0. Assume that the 1~,~... i, have been determined for all 

n < N such that P satisfies (61). for all N' < N. The problem is to construct Vi'... N such that (61) is satisfied 
for Nparticles. It follows from (59) that 

N 
P" = ~ ( -1 )k  ~. P"(D k) + U/~. (62) 

K ~ 2  D k 

If A is a Lorentz-invariant unitary operator on X"N ~ which transforms Q into Q o, 

A-~QA = Qo, (63) 

and 

A (Dk): = s-lim TD (dl . . . . .  d k ) A T ~  (d 1 . . . . .  dk) , (64) 

then 

a-~(DK)Q (Dk)a (ak) = Q o, (65) 

and from (62) 

P'~ ffi AQo~{~ ', (--l)k(k--l)!~ A-I(Dk)M(Dk)A (Dk) + VN}A -I, (66) 
k D k 

where 

vN: ffi A - I M A  - ~, ( - 1 )k (k -1 ) !~ ,  A-I (Dk)M(Dk)A (D k) (67) 
k D k 

is Lorentz-invariant, commutes with Qo, and vanishes for any cluster separation, 

[vN,Qo] = O, VN(D k) = O. (68) 

A construction of A satisfying (64) and (65) can be based on the following Lemma. 

Lemma 5. Let d (D k) = e i~(Dk) be a set of  unitary operators, defined for all D k, such that 

s-lim TD (dl . . . .  dr)A (Dk)T~, t (dl . . . . .  dr)=A (DkxD r) (69) 
rain d i - ~  j ~ • 

and A (D k) satisfies (65). Then 
N 

i ~ ,  ( - - 1 ) k ( k - - 1 ) ! ~ a ( O k )  
k--I D k 

A : = e (70) 

satisfies (64). 

Assuming P"(D k) is known SOKOLOV [10] gives a prescription for constructing operators A (Dk) which 
satisfy (65) and (69). IF A is then constructed according to (70) and v~ is an arbitrary Lorentz-invariant 
operator satisfying (68), then P~' and hence U~ is determined by the right-hand side of (66). 

The restriction to a fixed number of particles is not an essential feature of the dynamical systems we have 
considered. It is easy to incorporate particle creation [3,10,15] as long as there are Poincar6-invariant sectors of 
the Hilbert space ~g'in which the particle number is bounded. The relativistic Lee model [15] is an example. 

Canonical field theories, on the other hand, are radically different in that locality and infinitely many 
degrees of freedom are essential features of the relativistic invariance. This is evident from the construction of 
the Poincar6 generators as integrals over the energy-momentum tensor T~(x) :  

p~ = f T°g (x ) d3x , (71) 

K = f x T°°( x ) d3x , 
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1 f[xmTO,(x)_x ,TOm(x)]d3x.  (72) Ji="f  E•imn 
mn 

The commutation relations (2)-(8) are satisfied if and only if the energy density T°°(x) satisfies the local 
SCHWlNGER commutation relations [16] 

i [ T °o (x) ,  T OO (x') ] = - T°k(x') 0 "kS (x -- X') + T °k(x ) 0 g6 (x = x ') + o- (x, x '), 

where ~r must be antisymmetric in x and x ' ,  (o, (x,x') = Lcr (x' ,x)) and satisfy the relations 

f cr(x,x')d3x = 0 ,  f xcr(x,x')d3x = 0. (73) 

~r = 0 is sufficient but not necessary. 

The main results of Sokolov!s construction is to demonstrate that Poincar6-invariance and cluster separa- 
bility of a nontrivial S operator can be realized for a finite number of particles with direct interactions. 
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ABSTRACT 

By replacing sharp with stochastic localizability, positive-definite and covariant probability densities yield- 
ing conserved and covariant probability currents can be introduced in relativistic quantum mechanics. The 
resulting stochastic phase-space formalism can be used to construct covariant models of extended spin 0 and 
1/2 particles, whose interaction with an external electromagnetic field leaves the space of positive-energy wave 
functions invariant. 

INTRODUCTION 

Historically, the two outstanding problems of relativistic quantum mechanics had been [1]: (a) the 
search for a positive definite one-particle probability density with the right covariance and conservation proper- 
ties; (b) the construction of consistent relativistic one-particle models in which the interaction of the particle 
with an external field does not cause spontaneous transitions to negative-energy states. It has been evident 
from the very inception of modern quantum theory that the Klein-Gordon theory could not lead in the spin 
zero case to a satisfactory solution of either, of these problems, but initially it appeared that in case of spin 1/2 
particles the Dirac theory provided a satisfactory answer to the first problem in terms of the current j~ = ~bT~b. 
However ,  it eventually became clear that, after all, j°(x) could not be interpreted as a particle-position proba- 
bility density since, in the words of WlGHTMAN [2], "multiplication by x does not carry positive energy solu- 
tions (of the Dirac equation) into positive energy wave functions, (and therefore) in this respect the Klein- 
Gordon equation is neither better nor worse than the Dirac equation". 

In this report, we shall survey results which show that a satisfactory answer to both of the above problems 
becomes feasible as soon as the assumption of perfectly sharp localizability in space-time is replaced by a physi- 
cally more realistic notion of extended stochastic localizability. In other words, instead of resorting to the 
extreme idealizations of point-like particles whose location in relation to a classical inertial frame can be ascer- 
tained at any given instant with arbitrary precision, we shall acknowledge from the very start the fact that, first 
of all, actual measurements are of finite precision and, second, that all hadronic matter (and probably even the 
leptonic world [3,4]) consists of extended particles. 

Our approach to the notion of extended particle is not based on any of the standard models (harmonic 
oscillator quark models, bag or string models, QCD, etc.) although there are some clear-cut mathematical con- 
nections with some of these models (see Sec. 4). Rather, our interpretation originates in the more fundamental 
level of a theory of measurement based on space-time symmetries derived from phase-space representations 
[5,6] of the Poincar6 group, i.e., it is in the spirit of HEISENBERG's ideas [7] on the close interrelation of the 
notion of fundamental symmetry and elementary particle. Indeed, in a series of earlier articles (see [8] for a 
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review), we have studied the physical interpretation of representations of the Galilei group on L2(F) 
(F = phase space), and we have shown [9,10] (as briefly surveyed in Sec. 1) that certain of the invariant sub- 
spaces of L2(F) consist of wave functions which can be interpreted as probability amplitudes for nonsharp 
measurements of position and momentum. The key idea leading to the present relativistic results was to substi- 
tute in that nonrelativistic approach the Poincar6 group in place of the Galilei group (see Sec. 2), and thus 
develop a new method of quantization of classical relativistic models [11]. This procedure has been then 
applied [11-13] to standard relativistic Hamiltonians describing relativistic particles possessing in general intrin- 
sic electric and magnetic dipole moments [14] (see Sec. 3), thus arriving at relativistically covariant and gauge- 
invariant models of spin 0 and ~/5 extended particles. These models possess a consistent probabilistic interpreta- 
tion, and display no spontaneous transitions to negative energy states. 

1. NONRELATIVlSTIC STOCHASTIC PHASE SPACES 

In the Hilbert spaces HS(F) = 12(s) ® L2(F), s = 0, 1/2, 1 . . . . .  we consider [11] the ray representation 

(U(b,a,v,R)qJ)(q,p;t)ffiexp{~[__~(t_b)+mv.(q_a)]l 

× DS(R-t)~k(R-l[q- v(t  - b) - a ] , R - l ( p -  mv); t  - b) (1.1) 

of the proper Galilei group G+ r , [15] and denote by ~ ( t  e) the invariant subspaces that possess a (unique) reso- 
lution generator ~ (q',p') which, by definition, is a rotationally invariant function that has the following two pro- 
perties: 

t~(q,p) = <~:q.pkb>,V ~bEXs(F), : (1.2) 

~(F~) ffi YF I~q,p> dq dp<~q,p[, (1.3) 

In (1.2) < . [ . >  denotes the inner product in aWS(F), in (1.3) P(F~) is the orthogonal projector onto ~fS(F~), 
and 

~q.p = U (0 ,q ,P , / )~ :  ® ls, (1.4) 
m 

where 1 s is the identity operator in fi(s). The space and velocity infinitesimal generators of U(b, a,v,R)  pro- 
vide a representation 

X = q + / ~ / ~ p ,  P ffi -l~l~q, (1.5) 

of the canonical commutation relations, which is irreducible on each aT'°(F¢) = L2(F~). The transition to the 
2 2 3 configuration and momentum representations can be executed if~: has represenatives ~ : (x )E/ ( s )  ® L (1~) and 

[ i k . x ] , ( x ) d x  (1.6) (k) = h -3/2 f exp - 

in these representations, so that 

where the asterisk denotes complex conjugation. Then it turns out [91 that, for any q~ (q, p) E ~S(Fe), 

f IO (q, P) 12dq ffi f Xq ~ (x)It~ (x)12dx, (1.8) 

f IqJ (q, P) 12dp = f ~p~ (k)I~ (k) 12dk, (1.9) 

XqHX) = [ ~ ( x -  q)l 2, ~p6 (k) ffi [~(k - p)l 2, (1.10) 

where t~ (x) and ~ (k) are, respectively, the configuration and momentum representatives [11] of ~ (q, p), e.g., 

t k (q, p) = y ~ ~. p (k)~ (k)dk. (1.11) 

Consequently, Irk (q, p) ]2 = ~ t (q, p)~b (q, p) 6k t ffi matrix adjoint of ~b) can  be interpreted as the probability den- 
sity of obtaining the stochastic value [8] (q,X~q) × (p,~p~)EF~ for the simultaneous measurement of position 
and momentum -- the uncertainty principle being automatically satisfied by the confidence functions [9,16] Xq ~ 
and ~p~ on account of (1.10). 
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The consistency of this interpretation is confirmed by the existence of the Galilei-covariant probability 3- 
current 

j~ (q,t) =/-~m IO (q, p;t)12dp, (1.12) 

which, in conjunction with p~(q,t) = / I r k  (q, p;t)12dp, obeys the usual probability conservation equation. Fur- 
thermore, for the optimal case [9] of [x2] ~:(r)(x) = (21r3/2t~r) -3/2 exp - ~ , 0 < r < 0% (1.13) 

we easily obtain [17] that, in the sharp-point limit r---, +0, pC(q) and j~(q) converge to their conventional 

I~k (x)[ 2 and -~mqJ *(X)Vx (x)V~tk (x), respectively. counterparts 

The conventional nonrelativistic quantum theory of point-like particles moving in an external electromag- 
netic field (and/or mutually interacting via local potentials) can be recast ([10], [17]-[19]) into the present 
framework, with the ensuing advantage of the above outlined stochastic phase-space interpretation becoming 
readily available~ However, the dynamically interesting new features emerge when we consider interactions 

A~ (ct) = F(F~)A~(ct, Q)P(F~), v = O, 1,2,3, (1.14) 

with an external 4-potential A~(x) = A~(ct, x) by introducing, e.g., in the s = 0 case, Hamiltonians of the 
form 

1 e A  (ct)] 2 + eA~(ct) (1.15) H ~ ( t ) = ~ l p -  c e 

acting on ¢Eg(F~). The appropriate physical interpretation of such interactions reveals itself as soon as we make 
the transition to the configuration representation, when we discover that [11] 

(AY (ct)t~)(x) = / X~ (x)Af (ct, q)* (x)dq; (1.16) 

and, therefore, X~ (x) reveals itself as a configuration-space form factor (with its Fourier transform thus appear- 
ing as usual [20] in the first Born approximation as the ratio of the extended to the point particle cross section 
when the field is electrostatic). Hence, the interpretation of (1.15) is obvious: He(t) governs the motion of a 
particle that is extended in a stochastic sense (see Sec. 4) in the configuration space and moves under the 
influence of A ~ (x). 

The free propagator in L2(F¢), 

Ke(q",p", t " ;q ' ,p  t') = < U(t",q",-P-~m,l)ljlu(t', 
p, 

q; ,1)~>, (1.17) 
m 

describes stochastically (i.e., in the role of a probability amplitude) the motion of this extended particle when it 
is free. Indeed, the formal analogies with Brownian motion are striking, and so are the ensuing path integral 
formulas when compared to the Wiener integrals for a Brownian particle [12]. The propagator 

' ' . . . . . . . . .  <~¢,¢1Texp (t) K 6 ( q  , p  ,t , q , p , t )  = - , H6 ~q,,p,> 

for the interacting case can also be expressed in terms of path integrals which manifestly exhibit the Galilei- 
covariance of the model [12]. 

2. RELATIVISTIC STOCHASTIC PHASE SPACE KINEMATICS 

Conventional relativistic quantum mechanics has a consistent interpretation in the momentum representa- 
tion, but not in the configuration representation, so that we cannot fall back on it to test our ideas on relativis- 
tic extended particles and stochastic localization, as we could do in Sec. 1. Therefore, we shall extrapolate the 
key features of the nonrelativistic stochastic theory of the preceding section to the relativistic domain, instead 
of using conventional approaches as guidelines. 

In the relativistic phase space , M m ~ ~4 X V m (~_4 = Minkowski space-time; V m = forward mass-m 
hyperboloid) we introduce a time-ordered [12] family S 1 of space-like hyperplanes along which measurements 
are performed by all relativistic observers and adopt some o-ES l as the initial-data surface. On the 
E m =  cr x V,, hypersurface in Mm, we introduce the invariant surface measure 
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dX m (q,p) = 2p~do', (q)8 (p2 _ m2c 2) d4p, (2.1) 

which assumes the form dqdp in the inertial frames where o- is the q0 = const hyperplane. The Hilbert space 
aff~(Xm) ~ 12(s) ® L2(Zm) of one-column matrix-valued functions (with 2s + 1 components),  which extrapo- 
lates , ,~(F) to the relativistic regime, has the inner product 

(01 102) fZm 0 ~(q ;P)O2(q,P)dZm (q,P), (2.2) 

with 

Upon introducing, in the frame where o- is the q, ~ 0 hypersurface, the free time-evolution 

(2.3) 

p0 = (p2 + m%2)1/2, (2A) 

(where we have retained the 3-momentum operators in (1.5)), we consider the representations [6, 11, 21, 22] 

(U(a, A)0)  (q,p) = DS(A~IAAA_Ip)O (A -1 (q -a ) ,  A-lp)  (2.5) 

! 
of the proper Poincar6 group P~., where Ap denotes a Lorentz boost to the 4-velocity p / m .  

We denote by ,g:s(Z~ m) the invariant subspaces with a resolution generator 'o(q,P), (q,P) E Era, for which, 
by definition and by analogy with (1.2)-(1.4), 

O(q,P) = ('Oqp O),V~IEHs(Z~m), (2.6) 

P(Z~m) = fr.m I~Oq,p)dZm (q,P) ('qq,p 1, (2.7) 

2~q,p = U(q, Ap)rt. (2.8) 

In fact, to each L2(F#) we can set in correspondence an LZ(Zg) with "0 having the momentum space represen- 
tative 

~7(k) = (mc)I/2~(k), k = (k°,k) E I'm, (2.9) 

so that if we write, by analogy with (1.7) and (1.11), 

'o(q,P) = f e x p ( - h  q ' k ) ~ * ( A y l k ) ~ ( k )  dk • 5-:' (2.1o) 

• - d k  

O(q,P) = f ~qq,p(k)O(k) 2k o , (2.11) 

we shall obtain 

'O(q,P)12= [O(q,p;t)[2 + O [ --p~-]m2c2 , (2.12) 

as [p[ ~ O, i.e., the relativistic theory indeed merges with the nonrelativistic one at sm~ll velocities. It turns 
out that 10 (q,p)12 is properly normalized over Zm, that the 4-current 

j"(q) = f -~-10(q,p)12 dd-~.. (2.13) 
~ m --p 

is conserved, and that 10 (q,P)12 transforms as a scalar and j~ (q) as a 4-vector under (2.5). Hence, the nonrela- 
tivistic interpretation can be consistently transferred to the present case; albeit that marginal@ conditions 
(1.8)-(1.9) lose their significance in the absence of a probabilistically consistent conventional configuration 
representation and of a group property for Lorentz boosts (as opposed to Galilean boosts). 

The relativistic free propagator in a%fs(z~) is 

K,~ (q",p"; q', p') = (~q",r" I "~q',p'), (2.14) 

and it indeed has the property that [11-12] 

(q,P) ~ :zmK~ (q,P; q ',P ')0 (q',P') dZm (q ',P'). (2.15) o 

Furthermore, this free propagator is manifestly covariant. 
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For the s = 1/2 case the present quantum kinematics constitutes a stochastic phase-space counterpart of 
the Foldy-Wouthuysen kinematics for free spin 1/2 particles. The transition to a Dirac y-matrix representation 
can also be performed, but the minimal coupling of an extended particle to an external field has not been pro- 
ven to leave the space of positive energy solutions invariant [21]. Consequently, we shall treat both cases, 
s = 0, 1/2, simultaneously, by quantizing classical relativistic theories describing particles with or without inter- 
nal degrees of freedom. 

3. CONSISTENT EXTERNAL FIELD DYNAMICS 

The classical Hamiltonian of a particle with intrinsic electric and magnetic dipole moments  d a n d / z ,  
respectively, is [14] 

n c'= eA ° + c IP - eAI2  + + ~ c ~ r ~ P  ~ , (3.1) 

where o-6J = - d J, j = 1,2,3,  o'Ct=tj EUj, lx k, i,j = 1, 2, 3, and o-~,ct = _ o.t,.cl To quantize [13] this model on 
~t'S(Zmn), we set 

d = f~e--~ o" e~ 2mc ' ~ = g-~mc °'' (3.2) 

(where o- has the Pauli matrices as components) and replace the classical potential A ~ (q) by the self-adjoint 
operators 

A,~ (q0) = F(Z~)A~(q0, Q)P(Em~), (3.3) 

(A ~ (q0, Q)qj) (q,p) = A" (q)tO (q,p), (3.4) 

in the frame where the initial data surface o- is the q0 = const, hyperplane. The resulting Hamiltonian 

[ {me = e A  ° + c  IP - e A.0j2 + + . ~ c ~ F ~  ~ (3.5) /_/. (q0) 

is self-adjoint on o~¢'S(Zmn). The fact that H,~(q °) transforms indeed as the time-like component of a 4-vector is 
established [11-13] by expressing A~ as integral operators and noting that o -"~ can be written in a manifestly 
covariant form in terms of the metric tensor g ~  and the totally antisymmetric tensor e,~x~ as follows, 

o -"~ = 2(/xg~Xg ~K + dE ~x~) (o'Ko" x - o-xo-~), (3.6) 

and recalling that o -" transforms as a 4-vector. The case of spin s = 0 is obtained by setting f = g = 0 and 
working on ~"°(E~ m) instead of Xt/2(Enm). 

Hn (q0) is clearly self-adjoint in ,~s(Enm) , so that the time-evolution operator 

U,(qo,qo)= T e x p [ ~ c f q f  H~(q°)dq° ] (3.7) 

does not give rise to spontaneous transitions to negative energy states. It is well known that although the clas- 
sical Hamiltonian (3.1) is not gauge invariant, the theory as a whole does possess gauge invariance, and the 
same remains true in the quantum case [11 - 13]. 

To prove the covariance of the quantum theory as a whole one has to establish the covariance of the pro- 
pagator for the interesting case, which assumes the form 

K~ (q",p";q',p') = (r/0.¢,,V,J Un (qo,qo)~lO, q,,¢) (3.8) 

in the frame where the initial-data surface cr is the q0=  0 hyperplane. This can be generally achieved by 
expressing (3.8) as a path integral, which turns out to be manifestly covariant [12]. The same goal can be also 
achieved by means of a perturbation series [11], which is also term by term manifestly covariant. This series is 
of special interest in the weak-coupling limit since it makes apparent the presence of charge renormalization 
when a comparison is carried out between the classical and quantum Lagrangians [12]. 

To obtain a manifestly covariant form for the S-martrix, we write the interaction-picture evolution opera- 
tor from the reference surface o-' E SI to the reference surface ~r" ~ Sl in the form 

Un(o-",o-') = exp[-~P.q(o-")] U~(Jq(o-")J, Jq(o-'J)exp[-hP.q(o-') [ (3.9) 
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where q (o-') is the (time-like) 4-vector perpendicular to or' from the origin of a coordinate system where (~ is 
the q0= 0 .hyperplane and ]q (o-9[ is its invariant length. Then 

(k"lSlk') = lim (k"lU~(o-",o")[k'), (3.10) 
qO(cr")~ + 

q 0 ( o - , ) ~  _ 

where Ik) is the element of ~'S(Zm~) obtained by considering ))q,p(k) in (2.11) as a function of (q,p) at fixed 
k E V  m. 

4. DISCUSSION 

The most notable departure of the present models from the conventional external-field models is that the 
dynamics is not governed by an invariant equation, but rather by a Schr6dinger equation whose Hamiltonian is 
the total energy operator and therefore transforms as the time-like component of a 4-vector. Invariant equa- 
tions retain their significance in the present stochastic approach, but only as field equations for sei:ond- 
quantized theories [23]. 

The second notable feature is that the present quantum models for extended particles are obtained by 
quantizing classical models of point-like rather than extended particles. Indeed, the latter kind of models [3,24] 
run into serious instability problems already at the classical level, whereas in our case the extended feature of 
the particle appears only at the quantum level as an expression of a (consistent) extrapolation of the uncertainty 
principle to the quantum regime. Naturally, each resolution generator r/(k) in the momentum representation 
could be viewed as the internal-motion wave function for a quark-antiquark pair and, in fact, "0(r)(k), 
corresponding to ~:(r)(x) in  (1.13), coincides with the wave-functions obtained in relativistic harmonic oscillator 
models [25,26]. We believe, however, that a purely stochastic interpretation o f t  as a proper wave function for 
an extended particle is preferable, since, even if quarks were proven to exist as bona fide particles, we would 
again be running into difficulties with providing a consistent probabilistic interpretation in the configuration 
representation if we treated them as (perfectly) point-like particles (as is done in the above models). Instead, 
an analysis [23] of basic measurement-theoretical aspects at a second-quantization level reveals that a purely 
stochastic approach to the very notion of space-time is not only feasible, but in fact mandatory if a totally self- 
consistent combination of the uncertainty and relativity principles is desired. 
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ABSTRACT 

Problems involving curvilinear coordinates and accelerating reference frames can be treated using power- 
ful methods applicable to Maxwell's equations in curved space. A method developed by Cohen and Kegeles 
reduces the curved-space problem to that of solving a single complex linear scalar wave equation. Gravitational 
perturbations and neutrino fields can be treated using the same curved-space method. When applied to 
curved-space scattering problems, the method yields results in a straightforward manner. 

INTRODUCTION 

A major source of difficulty in integrating the electromagnetic field equations in a given curved space-time 
is the coupled structure of the Maxwell system, which consists of eight partial differential equations in six unk- 
nowns. Standard devices for the fiat-space treatment which successfully decoupled the equations fail in curved 
space, since space-time curvature leads to a more strongly coupled system. One such device, however, has not 
been fully exploited in the context of curved spaces: the Debye or two-component Hertz-potential formalism. 
It is the purpose of this paper to show that the Hertz formalism can be extended to all curved space-times, and 
that the Debye formalism can be extended to a wide and astrophysically interesting class of spaces, in each of 
which the potential obeys one (decoupled) linear scalar wave equation. Included are, for example, the Fried- 
mann cosmological models, the Kerr and Schwarzschild solutions of black holes and neutron stars, the G6del 
universe, Taub-NUT space, the Bondi and Kantowski-Sachs universes, and other universes of various Bianchi 
types. In fact, the results of ELLIS [1] and WAINWRIGHT [2] show that this method applies to every 
perfect-fluid model with local rotational symmetry. Mathematically, the class of space-times to which the scalar 
Debye formalism has been extended is the generalized GOLDBERG-SACHS [3-5] class: every algebraically 
special geometry, in the sense of PETROV [6], which admits a shear-free congruence of null geodesics along 
the repeated principal direction of the Weyl tensor. (One must admit from among these the spaces with strong 
background electromagnetic fields, as required in the test-field approximation.) 

In Sec. 1, we summarize the Hertz and Debye potential theory in flat space and formulate the problem of 
generalizing it to curved spaces. Section 2 couches the theory in the covariant language of differential forms; 
the notation and powerful theorems of this formalism provide the desired generalization of the Hertzian 
scheme. Section 3 translates these results into the standard tensor notation, both to assist the reader unfamiliar 
with forms, and also to facilitate the eventual use of the fully explicit NEWMAN-PENROSE (NP) formalism 
[4]. In Sec. 4 of [7a], translation of the above results into the concise and explicit NP formalism enables us to 
contruct a decoupled linear wave equation for the scalar Debye potential in the generalized Goldberg-Sachs 
class of space-times. Examples for important spaces are given in Sec. 5 of [7a]. The aim of Appendix A of 
[7a] is to illustrate the procedure of explicitly writing differential form equations in a definite Caftan frame, 
which is of use at several points in the text. Appendix B of [7a] is intended to enable the reader unfamiliar 
with the spinor or the NP spin-coefficient formalisms to understand the latter from a purely tetrad or Caftan 
frame viewpoint, and to calculate spin coefficients, necessary in the applications, by standard Caftan methods. 
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These methods provide a straightforward procedure for computing spin coefficients with a minimum of calcula- 
tion. 

1. HERTZ A N D  DEBYE POTENTIALS IN FLAT S P A C E  

This section is a brief summary of the flat-space theory and is largely based on the paper .of NISBET [8]; 
the reader is referred there for a more detailed discussion. We mention only those results necessary for the 
subsequent generalization. 

HERTZ [9] introduced a potential for the Maxwell field while investigating electric dipole fields; the true 
covariant bivector nature of this potential was noted considerably later by LAPORTE and UHLENBECK [10]. 
This type of bivector (antisymmetric second-rank tensor) potential is related by second derivatives to the physi- 
cal field, hence by first derivatives to the familiar four-vector potential. In fact, 

~b = - V ' P E ,  A = PE + VxPM,  (1.1) 

and 

E = ~7 (V.P  E) - PE - VXPM = --VXPM + VX (VxPE) ,  

B = V x P  E + V x ( V x P  M) = ~7V-P  M -  PM + V x P E ,  (1.2) 

are the relations in question. The notation is standard; we choose c = 1 and denote the Hertz bivector by PE 
and PM, according to the natural electric and magnetic labeling of components. The conditions imposed upon 
the Hertz potential (1.2) and the Maxwell equations 

~TxE + l~ = 0, V .B  = 0, 

V x B  - E = 0, V . E  = 0, (1.3) 

are just 

[]PE = 0, []PM = 0 (1.4) 

in the source-free vacuum case. Here, [] = 02lOt  2 - $72 is the d'Alembertian operator. 

A new type of gauge freedom, termed by Nisbet "gauge transformations of the third kind," is associated 
with the Hertzian potentials. Here we consider gauge transformations of the sources, that is, those gauge terms 
which may appear as sources in (1.4) while preserving the source-free property of the Maxwell field itself. 
These turn out to be bivectors of the form 

QE = ~TxG, QM = --I~ - Vg, 

R E = - L  - V/,  R M = -~TxL,  (1.5) 

where (G, g) and (L, l) are arbitrary four-vectors. In this scheme, the wave equations (1.4) for the potentials 
are modified to become 

[]Pe = QE + RE, []PM = Q M  + R~.  (1.6) 

The new fields given by 

E = RE + V (~ 'PE)  - i~e - V x P M  = -- V x P M  + V x  (VxPE) ,  

B = -i~M + ~TxPE + V x  (VxPM) = QM + V (V-PM) - JiM + V x P E ,  (1.7) 

may be verified to remain source-free by substitution into the Maxwell equations (1.3). 

NISBET's [8] reduction of the Hertz bivector to two purely radial vectors (DEBYE [11] potentials) util- 
izes the gauge transformations just discussed. In this representation, the potential is given by 
PE = rPE, P~t  = rPrn (with ~ the unit radial vector), and the gauge bivectors are obtained from (1.5) with 

G = L = 0 and g = 2PEl t ,  I = 2PM/r.  The functions PE and PM are the Debye potentials and (1.6) implies 
that they each obey the wave equation (which differs in the radial operator from the scalar d'Alembertian wave 
equation) 

8--~-+ ~O~-r2 + Ot 2 -~T 1 1  1 0 [ si-i-~- -~-  ~ 1 c3!tk ] - sinO O 0  + = O. (1.8) sine0 0~b 2 J 

The solutions, which are of the form qJ = e- ik trz t (kr)  Ymtt(O, ~6), with z t ( k r )  a spherical Bessel function and 
Ytm(0, 6) a spherical harmonic, give rise to the static (k = 0) and dynamic electric (PM = 0) and magnetic 
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(Pe = 0) multipoles of order 1 when inserted into the prescription (1.7) for the electromagnetic field [12]. 
Only the monopole field is missing in this scheme, since the differential operations (1.7) kill the l = 0 solution 
of (1.8). 

We emphasize the essential role played in the treatment sketched above by the gauge terms g and/.  For, 
it the d'Alembertian operators of (1.6) are computed explicitly upon the Debye choice PE = ~Pe, PM = ~PM of 
Hertzian vectors, the resultant expressions each contain three components; only by adding the specified gauge 
terms to the right-hand side does one reduce two components of each equation to identities and the third com- 
ponent to (1.8). 

A remarkable economy is achieved by the Debye potentials; the arbitrary source-free Maxwell field is 
specified by two scalar functions which obey a single separable second-order wave equation. Roughly speaking, 
one might expect that since a zero-rest-mass field possesses two degrees of freedom, no more economical 
representation of the Maxwell field is possible. 

With the intention of formulating a covariant generalization of the Debye potentials, one may consider 
the two-potential representation from the following viewpoint. By a suitable choice of bivector direction in 
space-time 1--m the rt direction (and its dual 0(b direction) 1--m one has succeeded in "diagonalizing" the 
Hertz potential in the sense of SYNGE [13]. That is, one has found the principal directions (and values) of the 
Hertz vector. Of course, one may in this sense "diagonalize" any bivector, with the resultant principal direc- 
tions algebraically dependent upon the bivector itself. Remarkably, the Debye scheme shows that all source- 
free Maxwell fields may be represented by Hertzian bivector potentials with the same principal directions, 
indendent of the Maxwell field, and determined a priori. 

The problem of covariant generalization of the Debye scheme may thus be viewed as the search for a spe- 
cial bivector direction in space-time, determined a priori and presumably geometrically, independently of the 
details of any particular Maxwell field. 

How the generalized GOLDBERG-SACHS theorem [3-5] provides special directions of the required sort 
in a wide class of space-times is shown in [7,14]. 

t 

2. DIFFERENTIAL FORMS 

The reader totally unfamiliar with the language of differential forms may omit this section; the chief loss 
will be a certain lack of motivation for some of the formulas of the next section, which is provided here. 

Once the results of Sec. 1 are translated from the three-space vector notation into the notation of 
differential forms [15-20], the framework will b e  provided for investigation of the curved-space problem, since 
the latter is a covariant notation. Comparison of this section with Sec. 3 may convince the reader of the supe- 
rior adaptation of the present notation over standard tensor analysis for problems of this sort (where antisym- 
metric tensors play a central role). 

We make use of the operators *, the Hodge dual; d, the exterior derivative; ~5 = *d*, the coderivative; and 
A =- d6 + 8 d  = d 'd*  + *d'd, the harmonic operator. The operator A has the property of reducing in Min- 
kowski space (or fiat three-space) to the d'Alembertian (or Laplacian) operator. 

The flat-space equations of Sec, 1 are now presented in the differential-forms notation; once an equation 
is written in this formalism, it is fully covariant. That the translations are correct may be verified by explicitly 
writing out the equations below in some Cartan frame. This procedure is illustrated in Appendix A of [7a] for 
selected equations. 

1 ti, ~ j , ,  In terms of the Maxwell 2-form f = -~-fm, to A where f~,~ is the Maxwell tensor and to ~', o~ = 0, 1, 2, 3, 

are the basis forms, the Maxwell equations (1.3) become 

d f  =O,  

~ f  = 0. (2.1) 

The equations (1.1) relating the Hertz bivector (2-form) P to the four-vector (1-form) potential A becomes 

A = 8P. (2.2) 

The analogue of (1.2) giving f i n  terms of P is 
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f = d S P  = - S d P ,  (2.3) 

the equality of the last two expressions requiring 

Ap = 0, (2.4) 

the analogue of (1.4). Now, the fact that an f g i v e n  by (2.3) is Maxwell field (i.e., satisfies (2.1)) is a trivial 
consequence of the identity d 2 ~ 0- -  the exterior derivative applied twice kills any form. That is, we have 

d f  = d ( d S P )  =-- O, 

8 f =  8 ( -SdP)  ~ 0, (2.5) 

where we have used the corollary 82 ~ 0 (a consequence of ,2 = ___ the identity, the sign depending on the 
dimension of the form, so that 82 = (*d*)(*d*) = + *d* =~ 0). 

The 2-form gauge terms (1.5) are 

Q = dG, 

R = *dL, (2.6) 

where G and L are arbitrary 1-forms. The wave equation (1.6) with gauge terms is therefore 

A p  = dG + *dL, " (2.7) 

so that the gauge-transformed field (1.7) becomes 

f = d S P -  dG 

= *dL - 8dP. 

That 
d 2 ___ 

(2.8) 

the transformed fields (2.8) still obey the Maxwell equations (2.1) is again a trivial application of 
8 2 = 0 .  

Equations (2.7) and (2.8) represent a fully covariant generalization o f  the Hertz potential scheme to all curved 

space-times. 

The Debye two-component reduction of this formalism in fiat space may now be summarized as follows. 
We use the spherical ortbonormal Cartan frame ~o ° = dT, oJ 1 = dr, oJ 2 = r dO, oJ 3 = r sin 0 d~b; we choose the 
Hertz 2-form to be o f  the form P = P # o ° ^  oj 1 + PM~o 2 Aco3, and select gauge 1-forms G = (2PE/r)oJ °, 
L = (2PM/r)o~ °. Then, just as in Sec. 1, (2.7) results in the wave equation (1.8) for both Pe and PM (see 
Appendix A of [7a]), and (2.8) yields the standard electromagnetic multipoles. 

It should be remarked that the entire Hertzian scheme as generalized above to curved spaces would fail if 
the world were Riemannian (as opposed to pseudo-Riemannian). For. if space-time were a compact Riemann 
space, a result in Hodge theory [16, 17] would say that AP = 0 if and only if dP and 8P  vanish. But then the 
prescriptions (2.3) for the Maxwell field would be identically zero. 

3. TENSOR NOTATION 

There is no unique translation of the formulas of Sec. 1 into tensor notation; in particular, many second- 
order tensor operators reduce in fiat space to the wave operator of (1.4) (two examples are the contracted 
second covariant derivative operator and the operator which we, in fact, adopt below). There is, however, a 
unique translation of the formulas of Sec. 2 into tensor notation, since the forms language is covariant; we 
choose this unique prescription. In effect, we are allowing the operators defined on forms to make the choice 
for us. The reader who has noted the elegance of the formulas of  the previous section (based on powerful pro- 
perties of  the operators in the theory of differential forms) will see the motivation for this choice. 

For relations between the operators defined on forms and the covariant derivative operator of conven- 
tional tensor analysis, [17] is especially recommended. 

In the present notation, the Maxwell equations (1.3) or (2.1) become 

V~f ~x  + V ~ f x ~  + V x f  m, = O, 

V"fu~ = 0, (3.1) 

where V u denotes the covariant derivative. The Hertzian bivector potential P.~ is related to the four-vector 
potential A .  (see (1.1) or (2.2)) by 
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A~ = -VxPx~,. (3.2) 

Equations (1.2) or (2.3), giving f ~  in terms of P ~ ,  become 

f .~ = - V . V x p x ~  + V~VxPx.  

= V x V x P ~  - VxV.Px~ + VxV~P~..  (3.3) 

The last equality specifies the wave equation analogous to (1.4) or (2.4) to be 

- V x V a P . ~  + ( V x V .  - V.Vx)Px~ + (V~V a - VxV~)Pxl, = 0. (3.4) 

It is readily seen via the Ricci identities that the last two terms are proportional to the Riemann tensor, so that 
the operator of equation (3.4) could no be preferred over the contracted second covariant derivation (the first 
term alone) purely from the standpoint of a generalization from flat space. Thus, an investigator working in the 
tensor formalism might not have succeeded in finding the operator of equation (3.4). 

The fact that the field tensor (3.3) obeys (3.1) is no longer proved by inspection as in the notation of 
forms. We present a proof. 

For the first set of Maxwell equations (the first of (3.1)) we choose the first equation (3.3) for f .~ and 
express it in terms of A~ ((3.2)), so that f~,. = VuA~ - V~A u. Then 

Vu~fvx + V~fx.,~ + V x f ~  = V~VvAx - V~Vx + AvV~,VxA~ - VvVt~Ax + V x V g A v  - V~VvAt~ 

= (V,~V v - VvVu)Ax + (V~.V~ - V . V x ) A .  + (VvV x - VxVv)Atz 

= Ra~t,A,. + R~xA,~ + R~"x~A,. (by the Ricci identities) 

= 3 R ~ . I A , ~  = 0 (by the cyclic symmetry of the Riemann tensor). 

Similarly, for the second equation (3.1) we express f~,, by the second equation (3.3) and introduce a 
potential Bxu ~ whose four-divergence (as opposed to A.  whose curl) gives f~,~. Thus, 

Bxj,~ ~ V x P . .  - VuPx~ + V , P x .  and f~.  ~ VaBx.~ 

together yield the second equation (3.3) (note the total anti-symmetry of Baud). Now, the second Maxwell 
equation gives 

V ~ f ~  = Vt'VXB~4,. 

= l ( v . V x  - V~V~')Bxj,~ 

_ 1 { D o-X# l~ 
- 2 ,~'x ~,~u-~ + R f ~ ' B x , ~  + R~-""Bx~ )' 

where the second line follows by the antisymmetry of Bx~ ~ and the third line by the Ricci identities. The first 
and second terms inside the brackets in the third line vanish, since the first factor of these terms is symmetric 
and the second antisymmetric in o-, /x (first term) or o-, ~. (second term). The third term equals 

1 ,~x~ 1 o-xu 

by the antisymmetry of B ~x", and also vanishes by the symmetry property R~I~xgI = 0 of the Riemann tensor. 

The gauge terms of (1.5) and (2.6) are, in tensor notation, 

0_.~ = v . a ~  - v ~ o . ,  

R ~  = -VXLx.~,  (3.5) 

where G. and Lxu ~ are arbitrary tensors, except that Lx. ~ is totally antisymmetric (L is essentially the dual of 
the arbitrary 4-vector or 1-form with the same kernel letter of the previous sections). 

With gauge terms included, the wave equation for the potential becomes ((1.6), (2.7)) 

_VxV xp .~  + ( V x V .  _ V.Vx)px~ + ( V . V  x - VxV~)pxu = V u G "  - V ~ G  u - VXLxj,~ (3.6) 

and the gauge-transformed field tensor ((1.7), (2.8)) is given by 

f . .  = - V . V x P x ~  + V~VxPx~ - V.G~ + V . G .  

= VxVXp.~ _ VxVj,  px~ + VXV~px~ _ VXLx~,~. (3.7) 
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Using a proof similar to that given above for the field (3.3), one can show that the transformed field still obeys 
the source-free Maxwell equations. 

Equations (3.6) and (3.7) comprise a covariant generalization of the Hertz potential formalism to all 
space-times. 

The flat-space Debye two-component reduction of the potential is now given in tensor notation. In the 
natural spherical coordinate basis for tensors, we choose Ptr = - Prl = PE; Poe, = - Pe,o = r2 sin 0 PM; all other 
components vanish. For gauge terms we take Gr=  2PJr,  the other components being zero; and 
Lroe, = 2r 2 sin OPM/r, other components given anti-symmetrically by permuting indices, or else vanish. Again, 
the statement is that with these choices, (3.6) yields the wave equation (1.8) for PE and PM, and that (3.7) 
gives the standard electromagnetic multipole fields. 

4. DEBYE POTENTIALS IN CURVED SPACES 

With the covariant machinery for the Hertzian potentials set up in the last two sections, it is possible [7] 
to formulate a two-component (or one-complex-component) reduction of the potential analogous to the Debye 
scheme in flat space. The problem consists of finding special bivector directions in space-time so that (3.6) or 
(2.7) yields decoupled wave equations for the corresponding'components of the potential for some choice of 
gauge terms (3.5) or (2.6). In [7], we showed that in a class of space-times, the Weyl tensor provides such 
special bivectors through its principal directions. These are, as required, defined geometrically by the space- 
time itself and independently of the Maxwell fields to be computed. 

5. DISCUSSION 

The fiat-space method of electromagnetic Hertz potentials has been generalized to all curved space-times. 
The covariant formulation of this procedure has provided the framework for an extension of the Debye poten- 
tial scheme to an astrophysically interesting class of spaces, where it gives a new, direct, and practical method 
for constructing Maxwell fields by solving one decoupled linear scalar wave equation. This formulation allows 
realistic problems in relativistic astrophysics associated with neutron stars, pulsars, black holes, and global 
(cosmological) phenomena to be investigated by direct computation. 

Results strictly annlogous to the spin-1 results of this paper [7] have been obtained for zero-rest-mass 
fields with other physically interesting values of spin and have been presented elsewhere [14]. 

When applied to curved-space scattering problems, the methods yield results in a straightforward manner 
[21]. An example involving black hole scattering can be found in [21]. 
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INTRODUCTION 

It is perfectly clear by now that the well-known Levinson's  theorem not only provides some deep theoreti- 
cal insight into the scattering process but also serves as a basis for many applications in a wide variety of 
mathematical and physical problems. Therefore, it is still worthwhile to extend this Levinson's  theorem to 
more general scattering situations. 

In the first part of this talk, we discuss a new set of  Levinson-type theorems for two-body scattering with 
potentials belonging to L 1 N L 2. These theorems are expressed in the form of trace formulas for the two body 
time delay operator. In that respect, this part can be viewed as a contribution to the general study of time delay 
in scattering. 

In the second part, we want to give an idea how these time delay aspects of modern scattering theory can 
be used successfully to discuss some properties of the quantum-mechanical partition function in statistical 
mechanics. In particular, we study a high-temperature expansion of the two-body interaction part of the parti- 
tion function for a gas of  Boltzmann particles. We clearly see how a cancellation between bound-state contribu- 
tions and scattering contributions to this expansion comes about. This cancellation is important, e.g., in chemi- 
cal equilibrium calculations in plasmas. Up to now, this cancellation has only been shown in WKB approxima- 
tion. Here we report a. full quantum-mechanical proof for smooth potentials. 

1. TWO-BODY TIME DELAY 

We start with a very short discussion of the known features of two-body time delay [1] which we employ 
in this analysis. 

The scattering system we look at is characterized by an interacting Hamiltonian h and an asymptotic Ham- 
iltonian ho. These operators act on a Hilbert space H = L2(~3). Here and in the following we systematically 
remove the center-of-mass motion from the problem. 

To define the time delay, we consider a family o f  projection operators P ( R )  onto a sphere of radius R in 
position space around the center-of-mass point. Given an incident wave packet f E H and a certain radius R, 
the time delay is determined by 

T( f ,R)  = f--+5 [lIP(R) ~f~_3ql 2 - lIP(R) Utfll2]dt, (1) 

where ~ = e -iht is the total evolution, Uz = e -ihd the free evolution~ and l~± = s-lim ~°Ut the M611er wave 

operators. The physical meaning of T(f,,R) may be read off from the right-hand side of (1). It is the 
difference between the total time spent in the sphere R by the scattering state l ) _ f  evolving under the total 
evolution and the initial state f evolving freely. In order to obtain a quantity which is independent of the 
radius of  the sphere, we take the limit R ~ ~ of (1). We assume that this limit exists on a dense set D of 
vectors f f o r  the class of  potentials V E L l £1 L 2 and is associated with a certain operator q which can be writ- 
ten in terms of the scattering operator and whose expectation values on D coincide with this limit. For rigorous 
work in this connection we refer to [2-4]. 
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Let us now describe the relation between the time delay operator q and the scattering matrix, S = l l+ f l _  
[5]. It is known that the two-body S-operator is decomposable in the spectral representation of ho. Further- 
more, we shall assume that S is simply multiplication by a function s (E) in this spectral representation (S is 
"diagonalizable," which is always verified if ho has a simple spectrum) [6]. In physical terms, this means  that S 
is an on-shell operator and that we want to subtract out the energy conserving ~5-function by defining a family 
of reduced energy-dependent S-matrices s (E) that act on H = L2^(O, da). In the same way, the theory of time 
delay allows us to construct a family of operators q (E) acting on H [2,5]. In terms of s (E),  the operator q (E) 
may be expressed as [3,5] 

d 
q (E) = - is* (E)  - ~  s (E).  (2) 

We remark that this relation has also been generalized to many-particle scattering [7]. 

A last feature of  time delay we need is known as the  spectral property. Let r (z) = (h - z ) - l  and r o (z)  = 
(ho - z)  -1 be the resolvents of h and ho defined for complex energy z. Then [2,8], 

Im Tr[r (E + in) - ro(E + i'0)] 
1% 

= E  n + i f 0 =  n + , 0 2 t r q ( E , ) d  E, (3) 
j=l Ix] + E + ir/I 2 ~ (E - E') 2 

where Tr is the trace on H, tr the trace on i / a n d  the - X ]  are the bound-state energies; the index j runs over 
all bound states. In the limit ~ ~ 0, this property has a simple interpretation: the change of state density pro- 
duced by the interaction V becomes the trace of the t ime delay operator. 

2. A SET OF TWO-BODY LEVINSON TYPE THEOREMS 

To derive the new set of two-body Levinson 's  theorems in terms of the energy moments  of  the trace of 
the time-delay operator, we need to know the analytic behavior of Tr[r (z) - ro (z)] in the complex plane (see 
(3)). 

Let IL  be defined as the set of  points in the z-plane a distance ~ or greater away from the positive real 
axis. Then 'I9], 

Lemma  1. Let V E L 1 A L 2. For all positive integers n, the operators ro(z)[Vro(z)] n are trace class for z E IIn. 
The function Tr {r o (z ) [ Vro (z ) ]"} is an analytic function o f  z in the II~ domain. 

L e m m a  2. There exist finite kr and kj such that for all Izl > (k}  + ki2)/2tz the Born series expansion 

Tr[r(z)  - ro(Z)] = ~ ( -1 )"  Tr{ro(Z)[Vro(z)]"} 
n=l 

is valid, The series is absolutely convergent in z. 

Lemma  3. Set z = k2/2lz. For all integers n /> 2, Tr[ Vr o (z)] n satisfies 

lim Tr [Vro(z)] n= 0 for  all I m k  /> 0. 
I R e k l ~  

The next step is to consider the function QN(z) defined by 
JV+l 

Q^,(z) = z n T r  {r(z) - ro(z) - ~_~ (-1)"ro(z)[Vro(Z)] n} 
n=l 

for N = 0,1,2 . . . .  In this formula we have introduced (N + 1) "correction terms", anticipating the high-energy 
behavior of  the trace. From the foregoing lemmas, it is clear that this function Q^,(z) is analytic in II w There- 
fore, its contour integral around the spectrum of h is equal to zero. This contour can be split up in the 
segments C j ,  Cr ,  and Cn. The contours Cj encircle the P distinct eigenvalues of the Hamiltonian h. The seg- 
ment  Cr is a circle at a distance F from the origin. The contour C~ "runs around" the positive real axis at a 1% 

distance "0,- It is straightforward to verify that the Cj contributes an amount  2~-i ~ ,  ( -X])  N. For C~, we can 
j=] 

show that [10] 
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Lemma 4. Let V E L 1 f3 L 2 and assume that the Hamiltonian h has no zero energy eigenstates. 

lim l i m f r  O~,(z) dz 
F ~  , ~ 0  J cn 

N+I 
= ifo E^ ' { t rq (E)  - 2 1 m T r  ]~ (-1)"ro(E)[Vro(E)]"} dE. 

n=l 

Finally, the Cr integral does not contribute. 

Lemma 5. For potentials V E L 1 tq L 2, we have that 

lira Y c  QN(z) dz = O. 
F ~  F 

Then 

These conclusions can be combined to give us the following set of Levinson's theorems [10]. 

Theorem. Let V E L 1 f~ L 2. Assume that h has no zero energy resonances or bound states, and no bound states in 
the continuum. Then 

.~  N+ 1 
E^'{tr q ( E )  - 2 Im Tr ~', (-1)"ro(E)[Vro(E)]"} dE 

0 n=l 

No 
= - 2 ~  Y .  ~-×~)^', 

j=l 

for N = 0,1,2,3 . . . . .  

The justification for calling these trace relations Levinson's theorems is based on the fact that the time 
delay operator in a given partial wave is just the derivative of the phase shift with respect to energy, as can be 
shown from (2). We remark that alternative discussions of the first N = 0 relation were given recently by 
NEWTON [11] and DREYFUS [12]. 

Finally, we discuss the correction terms appearing in these theorems. Ideally, one would like to have an 
easy way to obtain these terms as functions of the potential describing the scattering. So far, we know that they 
stem from the high-energy behaviour of the time delay operator, or, equivalently, from the high-energy 
behaviour of the full resolvent. For smooth potentials (V ~ S ) w e  can show [10] that these correction terms 

N 
are given by ~ cxE -k+l/2, where the c k can be calculated easily by using the elegant recurrence relations of 

k=l 
PERELOMOV [13]. Because of the basic relationship between the Schr6dinger equation and the Korteweg-de 
Vries equation [14], these ck are generalizations of the polynomial conserved densitities of the latter. For expli- 
cit forms of the ck we refer to the literature [14]. So for V E Swe arrive at 

Yo~ dE~+l ye~+l dEiv . . .  y ~  dEl[tr q(E1) - 2ClE~X/2 - 4c2E~ 1/2 . . .  

2 ̂ r+l ] -2~- ~ (_X f)^," (4) "'" (2N - 1)!! ĉ '+lEA'-1+/12 = N----(-. ~=1 

We remark that these relations, which are a special case of the relations given in the theorem, have been 
discussed by BUSLAEV [15] under differing circumstances. In Buslaev's version the time delay is replaced by 
the logarithmic S-matrix derivative form according to (2). In our derivation, we do not need the S-matrix. 

Furthermore, in the results reported by Buslaev there is no recognition that the correction terms are Korteweg- 
de Vries type invariants. 

3. THE QUANTUM-MECHANICAL PARTITION FUNCTION FOR PLASMAS 

In this section, we want to give an idea how these time delay results can be applied to understand certain 
features of the quantum-mechanical partition function [10]: 

We start by writing the partition function for a gas of Boltzmann particles in terms of the time-delay 
operator. Using the cluster-expansion representation of the quantum-mechanical grand canonical partition 
function, we write for the second virial coefficient [16] 

a 2 = -- - ~  h 3 Tr (e  -~h  --  e - # h ° ) ,  (5) 
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where X is the thermal wavelength, h = (27rl~2/tzkT) 1/2. We then introduce the Watson transform [17], which 
connects the statistical operator with the resolvent via a contour integral over the spectrum of h. Evaluating 
that integral we obtain 

a2 = - - v / 2  h3 [~ .  fox]+ 1 e-t3E tr q(E) dE } 
tJ~l  -ff"~ f o  ~ . 

(6) 

It is straightforward to show that this formula is a generalization of the well-known Beth-Uhlenbeck result [16]. 
One advantage of (6), is that it remains defined even when angular momentum is not conserved and the phase 
shift is undefined. Furthermore a formula of the type (6) remains valid for the third and higher virial 
coefficients [8]. 

On the basis of this representation (6), we are able to derive a high-temperature expansion for a2 in the 
case of smooth potentials [10,18] using the set of Levinson's theorems (4). To do this, let us concentrate on 
the continuum contribution in (6). We successively perform the following steps: add and subtract a term 
2Cl E-l/2 under the integral, do a partial integration with respect to energy, and use the 0 th order (N = 0) 
Levinson's theorem, to rewrite the result; we again add and substract a term -- 4c2E~ 1/2, do a partial integra- 
tion, use the N = 1 Levinson's theorem, etc. We then arrive at the following series: 

v <  Or~)V2 G - 2c2 - 13~,i=1 x] 

4 c3 fl3/2_ ~__~X4 8 c4 fl5/2_ ~ _ ~ X 6 + . . . I ,  
+ 3 - ~  2 s=l 15 TrY 2 3 s=l 

(7) 
J 

or 

1 21,,2° -- - 4rr [-~-~-j ~ ,  ( -1)  k+l 2k-1 
(2k - 3)!! ck/~e (8) a2 

The result (8) for the high-temperature expansion of the two-body interacting part of the quantum mechanical 
partition function is nothing but the Kirkwood-Wigner expansion [16], which can be derived in many other 
ways. Only recently, however [19], it was remarked that the coefficient of/3 k is the k th conserved charge den- 
sity for the Korteweg-de Vries equation. 

The advantage of the method of derivation explained in this talk is apparent in (7). There we see an 
explicit cancellation between the bound state and continuum contributions to a> Such a cancellation is impor- 
tant, e.g., in chemical equilibrium calculations in plasmas, where the bound state contributions are taken as the 
appropriate low-order term (=  Saha equation) to calculate the internal partition function. Since the effect of 
the scattering states only appears in the higher order terms, it is essential to properly include' compensation with 
the continuum in the definition of that internal partition function. In that respect, this compensation has been 
studied already numerically in the literature [20] in the framework of partial wave scattering. Consequently, 
one employs the following form for the effective internal partition function 

ZI = - x/2 h3 ~ .  + 1 -  ~ ( 2 1  ~ 2 1) (e xj, _ /3X j ) .  (9) 
j ~ l  I=0 

Furthermore, it was also shown that the - 1  compensation with the continuum depends only on the analytic 
properties of the phase shift [21]. Only recently, ROGERS [22] realized that the exact compensation of the 
/3XJ term, if it applied to general potentials, would imply a higher-order Levinson-type theorem. In the 
absence of such a theorem, he studied the compensation in WKB approximation. 

We have used precisely a set of higher-order Levinson's theorems to provide a proof and an explanation 
of the total cancellation of the bound state contributions for smooth potentials on a full quantum mechanical 
level. Moreover, our method does not use a partial wave projection so that it is valid in more general cases 
like, e.g., nonspherically symmetric interactions. Finally, it also clearly shows how this cancellation comes into 
play. Indeed, the basic ingredients of our method are the Levinson's theorems in terms of time delay. It is 
exactly those, relations that couple the time delay, describing the scattering continuum, with the bound states 
and the high-energy behavior of the resolvent. In this way, the derivation of the high-temperature expansion 
and this cancellation are naturally interconnected. 
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4. CONCLUSION 

To conclude this talk, we first remark that the general method described here is, in principle, applicable to 
higher virial coefficients, written down as functions of the two basic scattering parameters, namely, the bound 
state energy and the many-body time delay. It would certainly be interesting to see, e.g., what the contribution 
of the third virial coefficient is to the high-temperature behavior of a plasma. 

Secondly, we recall that we have studied the behavior of the partition function for smooth potentials. In 
the case of more realistic potentials, e.g., Yukawa or Coulomb (long range!), which have a 1/r singularity at the 
origin, it is known [23] that nonanalytic terms appear in the series (8) for a2. We are presently investigating if 
our methods can be modified to incorporate this effect. 
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I N T R O D U C T I O N  

The objective of this paper is to describe cluster expansions of the three-body problem and to assess, by 
computation, the utility of both the exact and approximate descriptions of the three-body scattering theory that 
emerge from the cluster approach. In part, this work is motivated by the success in nuclear collisions of the 
resonating group theory to approximately describe the elastic scattering of two tightly bound clusters. However, 
the resonating group theory treatment of the scattering process [1] is not an exact description of the N-body 
scattering process and a number  of attempts to bring'it within the framework of a complete and exact scattering 
formalism have been made [2]. The basic goal of any cluster expansion is to arrive at a simple approximate 
description of the scattering process that is accurate when clustering dominates the underlying physical states of  
the system. In this paper, we obtain a set of  integral equations that feature in a natural way two cluster states 
and at the same time remain exact descriptions of three-body scattering. The approximate solutions of these 
equations obtained by low order iterations defines the cluster expansion of the three-body problem and enables 
us to quantitatively investigate the accuracy of this description and its rate of  convergence to the exact three- 
body scattering solutions. 

Our approach to cluster representations is set in the context of  the KARLSSON-ZEIGER (hereafter KZ) 
integral equations [3]. Generally, integral equations for the three-body problem require a choice of complete 
basis in m o m e n t u m  space. In the approach of FADDEEV [4], the basis is taken to be plane waves of three 
free particles, whereas in the KZ equations the basis is taken as one free particle adjoined to an interacting pair 
that is either in a scattering state or a bound state. The resultant KZ equations are structurally different from 
those found by Faddeev. In particular, the complex three-body energy z appears only in the propagators of  the 
equations. The simplicity of  the propagators in the KZ equations allows us the decompose these Green func- 
tions into a sum of two propagators -- one contains only a two-cluster state and the other the orthogonal 
three-particle cont inuum state. This decomposition, in turn, allows us to decouple the integral equations, so 
that the cont inuum and the two-cluster contributions can be treated separately. 

The method outlined above for decoupling the KZ equations has been investigated at a formal level by 
BOLLI~ [5] and given an explicit kernel form using a three-body scattering wave functions approach by 
KUZMICHEV [6]. The equations outlined in the next  two sections in part consolidate and extend the results 
of  these two authors. A feature of considerable interest is the emergence of an effective channel potential that 
arises when the three-body degrees of  freedom are decoupled from the problem. This effective intercluster 
potential is given as the solution of an integral equation. 

1. DECOUPLED KARLSS ON-Z E IGE R  EQUATIONS 

In this section, we recall the form of the KZ equation, introduce the cluster decomposition of the propa- 
gators, and give the operator form of the  cluster expansion. We adhere to the choice of three-body m o m e n t u m  
variables given by KARLSSON and ZEIGER [3], namely the two independent Jacobi m o m e n t u m  variables in 
the three-body c.m. system are denoted by (p~, ~ ) .  The m o m e n t u m  of particle a having mass me is p~ and 
the relative m o m e n t u m  of the pair/3 and 3' is q~. The reduced mass of pair/33' is Iz~ = m m~(m~ + m~) -1 
and the reduced mass of cluster/3 T relative to particle cz is n~ = m~(ma + my) (rn~ + m E + my)- . We often 
will represent the pair of  vectors (p~, ~ )  by a single six dimensional vector P0 and associate with P0 a reduced 
mass n 2 ffi n~p,~. In this case, the three-body Hamiltonian for kinetic energy, H0, may be represented by 
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q2 po ~ 
H° = + 2/z,~ 2n 0 " (1.1) 

The scattering problem is assumed to be initiated in channel a.  Particle a ,  with initial momentum p~, is 
incident on the pair/3-/. The amplitudes for elastic and rearrangement scattering are denoted by H~-,~ (Pt3, P~), 
where/3 = 1,2,3 and labels the final channel. The breakup amplitudes will be the sum over/3 of the three 
functions E~-~ (P0, P~). As KARLSSON and ZEIGER have shown [3], these six functions satisfy a set of cou- 
pled integral equations, whose kernels are given by the set of energy-independent rearrangement potentials, 

V/~ba (p#, p~) = _~/3a~b 0 (q~l))~ba (q~2)), V~C (p#, Po) -.  ~#~q~/3 (q~l))0,~- (q~2), q~), 

V~ (Po, P~,) = 8o~t~- (q~i), q~)t~ (q~2)), V~C (Po, Po) = 8o~t~ + (q~l), I],8)I'~" (q~2), q~), (1.2) 

where 8t~ = 1 - 8~ .  The momenta 41) and ~2) are 

q~1) = p~, + ._~. p~, q~2) /z~ p,~ _ P~" (1.3) 
7 my 

The functions f ~ ,  t~ ,  ~ ,  and ~b~ are all constructed from solution of the a ~  two-body problem. If v~ is the 
two-body interaction and h~ = q~/2/z~ the kinetic energy operator, then ~ (q) is the bound state eigenfunction 
with binding energy a~, viz., 

h ~  = (h~ + v~)~k~ = -~¢k~ .  (1.4) 

The vertex function ~b~ is defined by multiplying ~# (q) by (q2/2#~ + ~) .  

The scattering wave function solutions of h E are the momentum-space matrix elements of the wave operator 
defined by the strong limits 

f ~  = s-lim eihte -jh~t. (1.5) 

In terms of f l ~ ,  the half-on-shell t-matrices are the kernels 

t~ (q ,q ' )=  < q l v a ~ l q ' >  = <q ' ] f~pTvalq>,  (1.6) 

where t denotes operator adjoint. 

For fixed values of a ,  the six functions H~-~ and E~-~ satisfy the coupled integral equations 

V~7 (P~,PT)H;,~ (PT,P,,) dp~ 
Hff,~ (p~,p,,) = V~ (p~,p,,) - £ 2 n T f  ~ + " " 

7>0 p ~  - k~ - i0  

(P~, p0)E7,~ (Po, P~) dpo, (1.7) - Z 2 . 0 /  - + 
7>0 po ~ -- k0 ~ - i0 

e~-,~ (po, p,~)= t /~ (po, p,~) - ~'. 2 n 7 f  I /~ (P°'P~)H+'~ (P~'P~) 
7>0 

V~7 (Po, po)E,~,~ (Po, P,~)dpo. (1.8) - Z 2 . o /  " + " '  

7>0 po 2 -- k(~ -- i0 

In describing an arbitrary final state channel ~,, it is useful to know the magnitude of the corresponding 
momentum allowed by energy conservation. We have reserved the symbol k 7 for this momentum, which is 
determined by p~ and the eigenvalues % of (1.4), and where by convention we set eo = 0. 

k~, = (2n7)'~ I z n .  % + % ~, = 0, 1, 2, 3. (1.9) 

Examining (1.7) and (1.8) reveals the basic structure of the KZ equations. The equations form a set of 
connected scattering equations for the .physical amplitudes H~-,~ and E~-,~. The kernels depend on simple energy 
independent potential-like functions given in (1.2). These potentials utilize only half-off shell two-body t- 
matrix information determined at positive two-body scattering energies. In (1.7) and (1.8), the singular 
denominator (p~2 _ k~ - i0) -1 describes propagation of the cluster qJT; the denominator (po 2 - k0 2 - i0) -1 

,gives the propagation of an intermediate state that is composed of a free three-particle continuum. 

We now turn our attention to the problem of decoupling these equations. In the process of solving this 
problem, we will automatically construct a cluster expansion of the three-body problem. Define for complex z 
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the Green functions G(z) and G,~(z) by ( H - z )  -1 and ( H ~ -  2) -1 respectively. The transition operator 
U#,~(z) of ALT, GRASSBERGER, and SANDHAS [7] is determined by 

G(z) -~ ~ G ~ ( z )  - G~(z) U~.(z)G~(z). (1.10) 

Use Ua~ (z) to define a related operator T~,~(z) by 

Ta,~(z) = V/jGo(z)U,~a(z)Go(z)V,~, ~ > 0, f l>0 .  (1.11) 

It is a simple matter to show that T~,(z) satifies the equation 

T/3,~ (z) = -~ ,~  VaGo(z) V~, - '~"~v V~G~, (z) T, , (z) ,  (1.12) 

where y is summed over 1,2,3. It is well known [3,8] that the interacting matrix elements of T/j,~(z) give 
representations of the physical transition amplitudes in momentum space. Specifically, if s~ = p~2/2n,~ - ~,~ is 
the available incident energy, then 

H~-~ (p~, p~,) = <p~t~[T/3,(s ,  + i0 ) [p~b ,> ,  E ~  (P0,P~) = <PtJl'l~(',o~)lT~=(s,+iO)[P~,~ >. (1.13) 

The half-off-shell function H~-~ is identical to the function appearing in Faddeev's description [4] of the elastic 
and rearrangement amplitude. Whereas E~-~ -- the fl component of the breakup amplitude --  differs from 
Faddeev's breakup representation and the two are only equal for on-shell kinematics. 

To proceed with the decoupling of the KZ equations, it is convenient to write (1.12) in a matrix form. 
Let V, V, Ro(z), R (z) and T(z) denote the 3 x 3 ,matrices with operator elements 8,~ V=, V,~8,~a, 8,~aGo(z), 
8~, G~ (z), and T ~  (2"), respectively. Then, (1.12) can be written 

T(z) = ~'(-Ro(z) V) - I"R (z) T(z).  (1.14) 

Now expand G~ (z) into cluster and continuum parts. Let the projection operators p b and pc be defined by 

< P., q~ [P~ I p~, q~> = 8 (p . -p~)~ .  (%)(k. (q~) *, (1.15) 

<P,o q~ IP c [P,~,q~ > = 8 (p.--p~) <q,~ [II~-II~-T [q~>, (1.16) 

where * denotes complex conjugation. Because the two-body problem is taken to be asymptotically complete, 
the projectors P~ and pc have orthogonal ranges, diagonalize H~, and span the three-body Hilbert space. Thus, 
one can write 

G,~(2.) = G~ (z) + G c (z), G~ (z) = P~G,~(z)Pb~,G c (z) = pCG,~(z)PC. (1.17) 

Note that the product G~ (z)G c (z) = O. Using this decomposition to write R (z) as the sum of a cluster state 
and a continuum state gives us 

R (z) = Rb(z) + R~(z), (1.18) 

where [Rb'C(z)]~ = ~ G ~  ,c (z). 

The next stage is to decouple the equations for H ~  and E~-~. We assume that (1+ VR~(z)) -1 exists. This 
is very probable, since the operator IZRC(z) is completely connected. In this circumstance, the equation 

T~(z)= V - VR~(z) T~(z), (1.19) 

has the formal solution 

TO(z) = (1 + fZRC(z))-lV. (1.20) 

Using (1.18) in (1.14) leads to 

(1 + ~'RC(z) ) T(z) = f"(-Ro(z) V) - VRb(z) T(z).  (1.21) 

Applying the inverse of the left factor gives 

T(z) = TC(z) ( -Ro(z)  V) - T c (z)Rb(z) T(z).  (1.22) 

At a formal level, (1.19) and (1.22) constitute a decoupling of the scattering problem. In (1.19), the only 
intermediate states that can propagate are continuum states. Given knowledge of T~(z), then (1.22) essentially 
turns on the cluster features of the scattering problem. 

2. INTERACTING REPRESENTATIONS 

We investigate now the consequence of the identities (1.19) and (1.22). In component form, these two 
equations read 
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T ~  (z) = 8/~, V~ - ~_.,8~:, VaG~, (z) T~,, (z), (2.1) 

T ~ ( z )  = T ~  (z)[-Go(z)  Vc~] - ~ ~ ,  (z)G~ (z)T~,~(z). (2.2) 
y 

After appropriate matrix elements are formed and the completeness of the two-body wave operators ~Z~- is util- 
ized, the operator identities (2.1) and (2.2) will give us four independent equations -- two integral equations 
and two quadrature relations. We define a quasi-breakup amplitude E ~  from the operator ~ (z) by 

E~,~ (Po, P:) = <P#f~- ( ' ,  q~)[ T~,~ (s~+iO)lp:%>. (2.3) 

This definition clearly parallels that of (1.13) for the/3 component of the physical breakup amplitude. Now 
multiply (2.1) from the left by < p~fl~-(., ~)1  and from the right by [p,~b,, > ,  and set z = s,, + i0. It is readily 
found that 

V~ (Po, po)E~  (Po, P~)dpo. (2.4) 
~>0 po 2 - k ~  - i0 

This is an integral equation for E ~ .  The kernel and driving terms are constructed from the KZ potentials V~ 
and V~. 

The second relation to be extracted from (2.1) is obtained by using states <p~b/~[ and [p:~b,~> to con- 
struct matrix elements. In terms of the two-cluster-like amplitude 

H~,, (p~, p~) = < pa%l ~,~ %+i0)lp,~% > ,  (2.5) 

(3.1) becomes 

V~, (p#, po )E~  (Po, P,~) H~,~ (p#, p:)  = F ~  (p#, p:)  - Z 2nor bc _ _  _'..._c _ " ' 
y>o po 2 - k0 2 - i0 dpo. (2.6) 

Given E~,~, (2.6) is a quadrature relation for H ~ .  Finally, turn to (2.2). Its two-cluster matrix elements are 
obviously 

H~-~ (p~,p:) = H ~  (pa,p,~) - Z 2 . 0 f  H ~  (pa._.2,p_~)H~ (p~,p:) dp~. (2.7) 
- />0 p ; 2  _ k 2 _ i 0  

Equations (2.4), (2.6), and (2.7) form a solvable system. In (2.4), we solve a three-body problem that 
allows only continuum intermediate states. Then, via (2.6), we take E ~  and by integration determine an 
effective potential function H~,,. Lastly, this effective potential is used in the coupled cluster structure given by 
(2.7) to find the exact elastic and rearrangement amplitudes H~-,,. Taken together, this system of three equa- 
tions provides a cluster description of three-body scattering which is exact. The effect of the intermediate three 
particle continuum states is summed up into the form of the effective two-cluster potentials H ~ .  Iterative 
approximations to (2.4), will automatically define a cluster expansion of the three-body problem wherein one 
can take into account successively more accurate, but approximate effects of the three-body continuum. At 
each stage of the iteration of (2.4) one is able to construct a better approximation to the exact effective poten- 
tial H ~ .  

One additional equation is needed to make the system (2.4)-(2.7) complete. We must find the breakup 
function E~~. This is given by the matrix element of (2.2) with respect to < p/3fl~-(', oZ)[ and [p,:~b~ > .  The 
result is 

e~y (po, py)n;~ (Pw P,0 dp~. (2.8) E~-~ (Po, P~) = E ~  (Po, P~) - ~ 2 n y f  p~2 k~ i0 y > 0  
i I 

+ This is a quadrature relation for E ~ .  In order to use it, we must first have solved for H+~ and E ~ .  Essen- 
tially, the inlegral on the right of (2.8) computes for us the difference between the quasi-breakup component 
E~,~ and the exact breakup function E~~. This difference is just due to the effect of including the influence of 
the cluster structure on the breakup amplitude. 

Equations (2.4), (2.6)-(2.8) have the feature of unlinking the continuum from the two-particle states. 
This structure then gives us the opportunity to treat the continuum intermediate states in a perturbation expan- 
sion. An expansion of this sort is attractive because it has a well defined physical meaning. 
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Finaliy, recall that the solvability of our decoupled scheme requires that (2.4) have a unique solution. In 
a previous study of the KZ equations, we have shown how to introduce an algebraic decomposition of the 
amplitudes that transforms the KZ equations into a Fredholm integral equation [9]. Similarly, (2.4) can be 
brought into a fredholm form. Thus, (2.4) obeys the Fredholm alternative and has a unique solution provided 
that the corresponding homogeneous equation has no solution. A complete mathematical proof of uniqueness 
would now show that this homogeneous equation can have no solution or only has a solution in exceptional 
situations. We have dealt with this problem by solving the numerical equivalent of (2.4). For three-body ener- 
gies in the bound-state and two-cluster scattering sector (i.e., below breakup), we have always found unique 
solutions. 

3. EXPANSION APPROXIMATIONS AND NUMERICAL SOLUTIONS 

This section will develop the iterative expansion of the effective potential representation (EPR) system of 
equations. Iterative approximations to (2.4) lead to approximations to the effective channel potentials 
H~,~ (pa,p~). We start by defining the zeroth iterate of E ~ ,  

E~ '° (P0, P,~) = 0. (3.1) 

The ith iterate of (2.4) is defined by the recursion relation 

V~ rcc (Po," Po') Eci~a (Po," P,~)' 
E~/+I (Po, P~,) = 1 ~  (Do, P ~ ) -  ~ 2nor z,>0 po 2 - - - ' ~ - -  TO dP°" (3.2) 

In terms of the ith iterate for the pseudo-breakup amplitude E~'~', there is a corresponding effective channel 
potential given by 

vg (pc, po) E~'~' c , i  t - -  

(p ,po) - - E 2 . o f  ~>0 P - - ~ - -  i0 dpo. (3.3) 

The last step in obtaining an approximation for the physical scattering amplitude is to use the approximate 
potential H ~  in place of H ~  in (2.7). The corresponding solution of Eqn. (2.7) we will denote H~g, ~. In all 
the examples studied numerically in this paper, 

H~i~ -'-" H~,~, H~g,' --" H~,~ as i - -  oo. (3.4) 

The convergence property reflects the fact that (2.4) may be solved by iteration. This is characteristic of many 
physical circumstances where it occurs that the coupling of the 3-particle continuum to itself is weak. Techni- 
cally, this means that the operator ~"GC(z) has all of its eigenvalues inside the unit circle of the complex plane. 
This will not always be the case and alternate approximate methods can be devised to deal with this situation. 
The last stage of obtaining a solution is to solve the coupled channel problem given in (2.7). Essentially, (2.7) 
is a kinematic copy of the two-body problem and is always easy to solve whatever the strength of the coupling. 

It is interesting to know whether or not the approximate solutions obtained by iteration are self-consistent 
with the impulse approximation. The standard expression for the impulse approximation given by 

(ba (q~l))<q(2) lL/ (~2--~c,--~2 +iO) lqy(1)>t~a (q~ 2)) 
~¢~(po,p~,) ~ f ffi dp~,, ( 3 . 5 )  

-2_~2 +%_ io 
where ~ = p~/2n~ and ~ = q~ /2~ .  For large values of p;, one expects the impulse approximation to 
become increasingly accurate. We  find that approximation i = 0 does not have the right structure to form H~,~, 
whereas once i /> 1 the impulse approximation is reproduced correctly. This in part explains why the i = 0 
cluster expansion never yields reasonable three-body phase shifts. 

We now report the computational results we have obtained using the decoupling scheme. We compare 
the approximate solutions found by iterative expansions for the effective potentials with those determined from 
an exact solution of Faddeev's equations. We consider the case where the two-particle interaction is a separable 
(rank one) potential in momentum space. In this special situation, the original Faddeev integral equations for 
the three-body problem reduce [10] to coupled integral equations in one continuous variable and are thus easy 
to solve numerically. Although this problem represents a somewhat simple version of the three-body problem, 
it can give us a good idea as to the rate of convergence implicit in the effective potential approximations. 

The separable interaction is chosen to be a Yamaguchi potential, viz., 
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h (3.6) 
v(q,q') = (q2+/32)(q,2+f12) . 

The physical system is taken to be either three identical bosons or three fermions. The range parameter fl is 
set to 1.44401 f r n  -1 and h adjusted to reproduce a two-particle binding energy of the deuteron, ~ = 0.053695 
f m  -2. We state our solutions in terms of the cotangent of the phase shift for the lowest angular momentum 
state of our system. This phase shift parameterization of the on-shell scattering solution is 

H+.i(k,k) = - 3---ei8(~) sin 8 (k). (3.7) 
4k 

The first set of solutions correspond to newtron-deuteron scattering in the spin-quartet state. The curve in Fig. 
1 labeled EXACT is the numerical solution of the Faddeev equations throughout the elastic scattering sector. 
The value of k required to breakup the bound state subsystem is denoted by kB. Also shown on Fig. 1 are the 
first four approximate solutions, namely the value of kcot 8 determined from H +'i where i = 0,1,2,3. When 
i = 3, the approximate solutions is indistinguishable from the exact result on the graph. Note that the approxi- 
mation for i = 0 is quite bad. This in accord with the fact that only for i >/ 1 do our approximations become 
sufficiently self-consistent to contain the impulse approximation. 

Fig. 2 shows the behavior of kcot 8 in the elastic scattering sector for three identical bosons in the J = 0 
state. This is a more strongly interacting system than the three fermion system because of the different spin 
and isospin recoupling coefficients. Again, for i >~ 1 there is rapid convergence of the approximate solutions. 
Fig. 3 show the values of the Fredholm determinant in the boson system for negative three-body energies, - E .  
The dotted curve gives the Fredholm determinant defined by the Faddeev equations. The solid curve is the 
Fredholm determinant for the negative energy version of integral equation (2.7). This negative energy form of 
the cluster representation is obtained by replacing the variable k :  in (2.7) by 2nv ( -E+%) .  It is seen that, 
although the Fredholm determinants are different functions of E, both have the same zeros and thus predict 
the same three-body bound-state energies. 
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Fig. 1. Solution of  the EPR equations for a system of  fermions corresponding to n-d scattering in the 4S state. 

Each curve is labeled on the right by the ith iterate of  the EPR expansion. 
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Fig. 2. Solution of  the EPR equations for identical spin-O and isospin-O particles. Curves are labeled on the right 

by the ith iterate of  the EPR expansion. 
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QUANTUM-STATISTICAL M E C H A N I C S  A N D  SCATTERING THEORY 
ON H O M O G E N E O U S  SPACES OF FINITE VOLUME 
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INTRODUCTION 

Quantum field theorists have recently been interested in calculations of the following type. Let M be a 
multiply connected Riemannian manifold. Assume the Hamiltonian H i s  intrinsically defined on M. Let 

Z (fl) = Tr(e -~n) 

be the partition function on M. Then the effective Lagrangian density L(1) on M is determined by 

1 L(1) = ~ fo  ~ d_if__ Z(13)e_~m2/Vol(m). 
t~ 

Of course, the partition function is of interest in its own right from the point of view of quantum- 
statistical mechanics on M. This paper will concern itself with a review of three important concepts: partition 
functions, asymptotics, and scattering theory. The calculation of the partition functions in simple cases for 
compact spaces in quantum field theory and quantum statistical mechanics is demonstrated in Secs. 4 and 5. 
The general result is presented in Sec. 6 for compact quotients of noncompact symmetric spaces of rank one. 
The traces are evaluated in terms of the density matrices. 

When the spaces are no longer compact, the density matrix is no longer of trace class. As we motivate in 
Sec. 2 from scattering theory, the "noncompact" part of the density matrix must be subtracted off to obtain a 
well-defined partition function. This is precisely what happens in the finite-volume theory presented in Sec. 7. 
The noncompact term in that case is expressed in terms of the theory of Eisenstein series and this is where 
scattering theory plays the crucial role. The class of spaces that we are ultimately led to consider are Rieman- 
nian locally symmetric spaces with nonpositive curvature. Thus M = F \ G / K  where G is a real connected non- 
compact semisimple Lie group with finite center (e.g. SOo(n, 1)), K is a maximal compact subgroup and F is a 
discrete subgroup of G which we shall assume is without torsion and FNG compact in Sec. 6 and such that 
Vol (F\G) is finite in Sec. 7. 

1. PARTITION AND DENSITY FUNCTIONS 

The partition function is determined by the density matrix p which is the solution of the Bloch equation 
on M." 

°o +Ho=0,  
o/3 

where p (x",x', O) = 8 (x"-x ') .  The density matrix on M and its simply connected covering space AS/are related 
by 

p (x",x',#) = Z a (~)~ (x",x',~), 
yEr 

where a is a unitary one-dimensional representation of F. 

If/~r has a discrete set of eigenvalues ~.n, 

/:/1~> = ;,.1~ >, 
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then formally we have 

n 

and 

Z(fl) = Tr(e-t3~ = ~ e -t~x". 
n 

2. SCATTERING PHASE SHIFT 

For scattering theory problems involving a central potential V(r),  the renormalized partition function 

ZL (t3) = Tr(e-~HL--e -an~) 

is related to the phase shift r/L ( k )  by 

ZL(13) = "-~1 fo ~ e-,~Xk d~lL(k)dk dk, 

el ] where HL = Hf, + V(r )  and Ht~ = 2rot dr 2 - L ( L  + 1)r -2 . 

The scattering length AL is given by the "low temperature" asymptotics on Z L ~ ) .  Here, 
/ 

"Ol,(k) ~ - A z k  2t + l(mod rr) as k ~ 0. and At = ( - 2 m / h  2) lim [13 t + -~ZL(f l) /a (L)], where a ( L )  is a known 

constant. 

3. ZETA FUNCTION RENORMALIZATION 

Zeta-function renormalization in quantum field theory treats the problem of finding the effective energy 
momentum tensor < T,~ > or the total energy E = - y ~  L (1) (or the integrated form of < To O > ), in terms 
of the zeta functions ~ (s). The connection between ~ (s)~and the density matrices p (t3) is given by the Mellin 
transform 

1 r ~  s - 1  - -  ,, ,, 
(S,X",X') = - f - ( U  Jo t~ 0 ~3,X ,X ) dfl. 

One has 

~(s) = fM ~(s,x',x')dx'= ~, .a~ ~-" 

in the case of a discrete spectrum, where na~ is the multiplicity of the representation a in the ~.-representation. 
One of the standard results of zeta function renormalization is that the one-loop effective action W (1) is given 
by 

÷ ,-1 ] W (1) = - lim ~ ,  ~'(0) . 
s ~ l  

4 .  PLANAR RIGID ROTATOR 

The partition function of the planar rigid rotator ( H =  - 2 ~  [ 2~r ]2 02 [ L ] 002, M = S  l) is 

z~)=l+2,~ expl-'~ [~-]2m 2] 
m = l  l 2m 

which is twice the classical theta function. The Mellin transform of [Z(fl) - 1/2]/2 is the Riemann zeta func- 
tion 

~(2s) = ~'~ n -2s. 
n = l  
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The theory of high-temperature asymptotics is a very interesting field. Mathematicians have called this 
area geometric asymptotics since the high temperature limit of Z(~) is an asymptotic expansion whose 
coefficients are Riemannian or spectral invariants of the underlying manifold. This theory first arose in spec- 
troscopy (as defined by Sir Arthur Schuster) and the first examples were developed in early quantum-statistical 
mechanics. For more details, see [8]. 

Quantum field theory of scalar fields ~b C~) on S 1 can be described in terms of the zeta-function approach. 
Viz., the vacuum average of the Hamiltonian E = < H >  for the ~b (~) fields is given as follows. Let 

M = S 1, -~/= R, and F = ~'. Representation a is given by a (3~,) = exp(21rina), 0~<a~<~. The eigenvalues 

of H = d2/dqb 2 a r e - k 2  where k = n-a. Finally, 

E = ~ (-1/2)s] .  

This can be evaluated, using the Hurwitz-Lerch-Hermite zeta functions, to be 

E = -Tr 2 ~ .  n-2cos(2~rn~) = a -  a 2 1 
tt=] 6 "  

5. SCALAR FIELDS ON EINSTEIN UNIVERSE 

Another example is the case of conformally coupled scalar fields on Einstein universe T®S3(a). The 
eigenvalues and degeneracies are well known in this case to be ~, = (n/a) 2 and d n = n 2, n = 1, 2, 3 ..... where 
a is the radius of S 3. Thus, 

~(S)s3 = ~, dn ~.J~ ~' n2(n2/a2)-s= a2S~(2s-2). 
n=l 

Thus, the total energy for real fields is 

E =  ~ (-1/2)s3 = 240a" 

As stated in the Introduction, there is considerable interest among quantum field theorists to study exam- 
ples of modified Einstein universes of the form T® ~ r / F .  To calculate the total energy or energy-momentum 
tensor, we have seen that it is necessary to know the partition function on the space of interest. We turn our 
attention to this problem. 

6. PARTITION FUNCTIONS ON COMPACT QUOTIENTS OF SYMMETRIC SPACES OF NONCOM- 
PACT TYPE OF RANK 1 

For spaces of this type, the partition function is determined by the Selberg trace formula which is stated 
as follows. Let/5 (,8) be the fundamental solution of the Bloch equation on G/K. Let U be the representation 
of G induced by the identity representation of F. Then certain spherical representations { Uj,j /> 0} of G occur 
in Uwith multiplicities nj. The partition function is given by 

1 

~(/3) = VoI(F\G)IS(1) + (4"tr/3) 2~" lu~lj%,)-lf(h%,)) exp(-u~/4/3),  
3' 

where tS ( t )=  Y 2  exp(-r2/3)c(r)-2dr" Here c(r) is the Harish-Chandra c-function (which determines the 

Plancherel measure of G/K), j6/) is a positive integer (such that 3' = o j~r) where o- is primitive), and C(.) is 
a known positive function. 

7. PARTITION FUNCTIONS AND SCATTERING THEORY 

Scattering theory arises naturally when the space F\G/K considered in Sec. 6 is no longer compact but 
has only finite volume. Selberg himself used concepts from scattering theory when he originally treated this 
case. Basically, the problem is that the left-regular representation of G on L2(G/F) in this case is no longer a 
discrete direct sum of irreducible unitary representation as occurred in Sec. 6. Instead L2(G/F) = L~s~ L~s 
where UIL~s is a direct integral of unitary principal series. The space L~s(K\G/F) is the closure of the sub- 
space spanned by wave packets formed with Eisenstein series of type 1. The scattering matrix S arises naturally 
in the theory of Eisenstein series. 
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In the simple case of SO(2)\SL (2,R)/F, S(z) is the scattering matrix for the automorphic wave equa- 
tion 

Utt = y2AU + flU. 

This relationship is explored in detail in LAX and PHILLIPS [10], LANG [9], and FADDEEV et aL [3,4]. 

The result we need is that the partition function is now given by 

1 Z(/3) : [z(F)]  VoI(G/F) ~ - / _ '  exp(-r2/3)c(r)-'c(-r)-ldr 

l 

+ (4rr/3) 2~,lu~lj(3")-lC(h(3"))exp(-u~/4B) 
3' 

1 exp(_r2/3)Tr(S,( i r )S( i r ) , )dr  + W  

1 (d-Tr(S (0)) --~- f_~ exp(-r 2/3) [r'(l+ir)/r (l+ir)ldr +~- 

+ ClfL exp(-r2/3)dr 

+ c2fL  exp(-r2/3)J(r)dr, 

where cl and c2 are known constants, J(r) is a known function, and z (F) is the center of F. 

APPENDIX 

Let G be a connected, noncompact, simple Lie group with finite center K, a maximal compact subgroup. 
We assume that the rank (G/K) = 1. Let g = k + p  be the Caftan decomposition with Cartan involution 0 
and let ap be a maximal abelian subspace of p.  Let dP+ be the set of positive roots, let- 

1 
P + = { a  E d~+la # 0 o n a p } , a n d l e t p = ~ -  ~p  a .  

+ 

For ~ = P+[%, there is an element/3E~-'~ such that 2/3 is the only other possible element of ~", p,q are 
the number of elements of P+ which restrict to 13 and 2/3, respectively. Let H o be the element of ap for which 

1 

/3(H o)= 1. Then c o= ( 2 p + 8 q )  2. 

The dual space A of ap is identified with R and for h in Ap we put u(h) =/3(log h). For the discrete 
subgroup F of G, we assume F has no elements of finite order other than those in its center z (F). Thus every 
element of F is conjugate in G to an element of the Cartan subgroup Ap. We write A = AkA p and choose an 
element h (T) of A to which 3' is conjugate. Let h (3') = hk (3')hp (3'). Then u~ =/3 (log hp (3')). The norm of 
u~ is essentially the length of the shortest geodesic in the free homotopy class associated to 3' on F G/K. 

Let U be the representation of G induced by a representation a of F. If F \ G  is compact or on 
L~s(G/F), U is discretely decomposable with finite multiplicites. Let U1,U2,... be a complete list of in- 
equivalent irreducible unitary representations of class one which occur in L~s(G/F) with multiplicities nj. Each 
nj is finite. Since each Uj is class one, it corresponds to a unique elementary positive definite spherical func- 
tion (~vj,#)j ~A ¢. 

Finally, d is the number of equivalence classes of F-cuspidal minimal parabolic subgroups of G, the 
equivalence relation being conjugacy by an element of F. 
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EULER-ARNOLD-LAX VECTOR FIELDS ON LIE ALGEBRAS 

It is well-known that certain nonlinear partial differential equations can be solved in terms of linear analysis 
by what has been called the Inverse Scattering Technique [1-4]. There has been much speculation among 
workers in this field that there might be a unified way of looking at equations that are amenable to this method, 
but there are only so far isolated, but tantalizing clues to what such a unified theory might be. 

Work of F. Estabrook and H. Wahlquist and the author has suggested that there are close links to the 
theory of Lie groups, and that solutions to the differential equations in question determine certain families of 
submanifolds (curves and surfaces) of Lie groups [5-17]. The aim of this paper is to tentatively suggest a pos- 
sible classification scheme based on the ideas presented in [9,11,12,16]. Here is a brief introduction. 

Let 9 be a Lie algebra with the real numbers  as field of scalars. Assume,  for the moment,  that ~ is 
finite-dimensional. (Ultimately, it will be essential to extend the ideas to infinite dimensional Lie algebras.) Let 
V: ~ ~ 9 be a vector field over 9 .  It determines a set of  curves in 9, the solutions of the differential equa- 
tion 

= V(A (t)). (I) 
'dt 

Let (g,A) ---, Ad g (A) be the map G × 9 ~ 9 which determines the adjoint representation of G and 9.  (Thus, 
if G is a group of matrices, 

Ad g (A)  ~ gag  -I,  

g E G ,  A E  9") 

The action of G on 9 partitions 9 into submanifolds, the orbits of the action. 

Definition. The vector field Von ~ is said to be of Euler-Arnold-Lax type if each solution of (I) lies on a sin- 
gle orbit of Ad G. 

Remark.  This is a Lie-group theoretic version of what the analysts now call an isospectralflow. 

Here is one construction of such vector fields V. Let 

8 : ~ - 9  

be any map. Set 

V(A)  = [B(A),A],  

for A ~ 9 . (2) 

Equation (1) then takes the form 

d A  = [B(A (t)) ,A (t)]. (3) 
dt 

For example, the equations for the geodesics of  a left-invariant Riemannian metric on G take the form (3) [17] 
with B: ~ ~ 9 a linear map. This often provides a "Hamiltonian" structure for (1.3), as described in [9]. 
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1. E U L E R - A R N O L D - L A X  V E C T O R  F I E L D S  W H I C H  ARE REDUCED BY S U B G R O U P S  

Let ~, G, V he as in the previous section. Suppose H is a Lie subgroup of G and let S be a submanifold 
of ~ .  The pair ( S , H )  is said to reduce Vif the following conditions are satisfied: 

(a) Vis tangent to S. (1.1) 

(b) The solution of (1) which lie on S also lie on orbits of/4. 

In [9], it is shown how such reductions, with H a solvable Lie group, can lead to "complete integrability" 
or "solvability by quadratures" of differential equations. 

It may also happen that on certain structures there are two such groups H and K, with both (S ,H)  and 
( S , K )  reducing F. For example, as we shall show below, for the Toda lattice, G = G L ( n , R ) ,  H = natural 
solvable subgroup, K = maximal compact subgroup, S = set of Jacobi matrices of the Lie algebra ~. 

For example, suppose Vis of the form (3). Then, two mappings B, B': ~ ~ ~ provide the same solu- 
tions on the submanifold S providing that the following condition is satisfied: 

B ( A ) -  B ' ( A )  E centralizer of A in ~, A E S. (1.2) 

This provides the algebraic freedom to chang e from one group to another. 

Now, we examine the "Toda lattice" from this general point of view. 

2. THE GENERALIZED TODA LATTICE AND GRADED ASSOCIATIVE ALGEBRAS 

In addition to its Lie algebra structure, suppose that ~ has an associative algebra structure 

(AI,A2) ----, AIA 2 

with the Lie algebra structure given by the commutator: 

[A1,A2] = A I A  2 -- A2A 1. 

In addition, we suppose that ~ has a graded structure, i.e., ~ as a vector space is a direct sum 

of linear subspaces. Finally, we suppose that. 

~n ~m C ~n+m. (2.1) 

Set 

oa= ~ - l ~  ~o@ ~}1. (2.2) 

The elements of ~ are called the Jacobi elements of ~. Let B: ~ ~ ~ be the linear mapping defined by the 
following formula 

B ( A _ m  + . . .  + Ao + . . .  + Am) = A - m  + . . .  + A_~ - d l . . .  - Am. (2.3) 

Set 

V B ( A ) =  [ B ( A ) , A ] ,  A E ~ (2.4) 

Theorem 2.1. V~, considered as a vector f ie ld  on ~ ,  is tangent to 3. 

Proof. S u p p o s e A = A _ l + A o + A L  C ~,withA_L ~ ~ -~ ;Ao  ~ ~ ° ; A l  C ~J. Then, 

B ( A )  = A _  I - A I. 

Hence, 

VB(A ) = [A_ l - A I , A _  l + Ao + All 

= [~A"_I.A o] + [A_I,A 1] - [a_l ,A I] - [A~,A 0] E J. 

Q.E.D. 

Thus, the orbits of V B which lie in ,~ are precisely the solutions of the differential equations, with constraints: 
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dA = [B(A),A], A(t)  E ~. (2.5) 
dt 

Now set 

~ + =  90+  91+ ~ 2 +  . . . .  (2.6) 

Because of the relations (2.1), 9 + is a Lie subalgebra of ~. Note that 

B ( A ) - A  E 9 + , A E ~. (2.7) 

Hence, 

Va(A) = [B(A) - A,A]. (2.8) 

Assume for the moment  that ~ is finite dimensional. Let G be its Lie group. (The "Toda lattice" 
corresponds to the case G = GL (n,R).) Let G + be the connected Lie group of G corresponding to the Lie 
subalgebra ~+ of ~. 

Theorem 2.2. The vector fieM VB is tangent to the orbits of G +, 

Note also that G + is solvable if 9 ° is abelian. In this case, the "integrability by quadratures" of (2.5) 
(which is the "Toda lattice" when G = GL(n,R)) is related, as explained in [9], to the classic 19th century 
work relating solvable Lie groups and ordinary differential equations which are "integrable by quadratures". 

There are two directions of generalization inherent in this simple algebraic formalism which have not yet 
been pursued in detail: the infinite dimensional ~ ' s  and the case where ~0 is not abelian, so the G + is not 
solvable. 

There is a certain intuition underlying this condition which is related to the Gel'fand-Levitan formula of 
Inverse Scattering theory. I will now leave the domain of precise Lie theory in order to suggest certain formal, 
algebraic directions which might prove useful in further research. 

3. INTUITIVE BACKGROUND OF GEL'FAND-LEVITAN 

Let X be an orientable manifold with volume element differential form dx. Let F(X) denote the C ~, 
real-valued functions on X. Let D (X) denote the linear differential operators 

A: F ( X ) ~  F(X). 

D (X) forms an associative algebra. Le t  Fo(X) denote the subspace of F(X) consisting of the compactly sup- 
ported functions, i.e., those which vanish outside of a compact subset of X. Then A E D(X) also maps Fo(X) 
into itself. 

One can now--by imposing boundary conditions and norms--complete Fo(X) to a Hilbert space H, with 
operators A defined in suitable domains within H. Given two operators A,A' ,  one can often construct unitary 
(or isometric) operators U: H ~ Hwhich  intertwine A and A'. 

UA = A 'U  

Typically, such operators U involve the processes of scattering theory. Differential-geometrically, these involve 
"global" properties of  the differential operators. 

In parallel, one can construct integral operators 

a: F o ( X ) ~  FiX) 

which intertwine differential operators. For example, suppose a is of the following form: 

(f) (Y) = f x  K (y,x)f(x)dx. (3.1) 0£ 

Here, "dX' is a volume element differential form on X. For each y: x ~ K(y,x) is a generalized function on X. 
For example, it might be a smooth function on a certain open dense subset of X, with certain singularities, 
which move with y, of this subset. The goal is to set up the following conditions: 

(a) differential equations for the function (x,y) --, K(x,y) on the open subset where it is smooth; 
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(b) relations between the singularities and the differential equations in (a); 

so that a intertwines A and A'. The Gel'fand-Levitan operators are the prototypes for this scheme, which will 
now be explained. 

Let 

X =  P., 

a = a~ + V(x) ,  (3.2) 
a '=  d~ + V'(x). 

(dx = d/dx). Thus,  A,A'  are Sturm-Liouville operators with potentials Vand  V'. dx = Lebesgue measure on 
X. Look for a of the following form: 

a( f ) (y)  = f ~  K(y,x)f(x)dx, (3.3) 

where 

K(y,x) = O, i f x  > y. (3.4) 

Thus, K(x,y) is smooth on lq_ 2, minus the diagonal x = y, and is zero in the region (3.4). One can then find 
integral operators ,x which intertwine A and a ' .  Now, 

c¢(f)(y) = fY_~ K(y,x)f(x)dx. (3.5) 

Remark.  This indicates that a is a causal operator, i.e., if x,y are physically interpreted as "times", then a ( f ) ,  
at a given time y, only depends on the values of f at times ~<y. Part of the problem involved in extending the 
inverse scattering technique to higher dimensions is to discover the appropriate notion of "causality". 

We will not be concerned here with any further details about the way the integral operator (3.5) is deter- 
mined. What is important for group theoretical purposes'is that the operators of form (3.1) again form a group. 

Abstractly, we have the folloWing set-up. A Lie algebra ~-of  operators, together with two groups L and 
H acting as automorphisms of ~ .  We are--as  in the toy theory constructed in the previous sect ion-- then 
motivated to look for mappings B: ~ ~ ~, together with curves t ~ A (t) in ~which  satisfy the equations 

dA  = [B (A),A l, (3.6) 
dt 

together with the possibility that dA/dt is tangent to the orbits of both H and L. Again, we might do this bv 
requiring that the following conditions be satisfied: 

B (A) ~ ~ ~ Lie algebra of H. 
For some function'F(A ) of the operator A, 
F(A) + A ~ ~ =-- Lie algebra of L. 

Now, the Gel 'fand-Levitan situation (together with the later work by GEL 'FAND and DIKKI [18,19], 
leads us to suspect that F(A) will not be a polynomial function of A, but something more general--a 
"pseudodifferential operator" of  some form. Thus we are led to the program of extending the Lie algebra of 
differential operators by adding certain "pseudodifferential operators". 

Notice that, for group-theoretic purposes, it is not crucial that ~ and its possible extensions in which 
F(A) is to lie, be operators. What is important are the Lie-algebraic properties. Now, in quantum mechanics 
one is faced with a similar problem, i.e., that certain physical calculations involve only algebraic properties of 
operators, not necessarily the representations in which they are encountered. (In 1920's vintage quantum 
mechanics, this is called the "matrix method.") The best formalism for dealing with such matters seems to be 
the Weyl-Wigner-Moyal formalism, which defines a bracket structure (reducing to Poisson bracket as Planck's 
constant goes to zero) on certain types of "classical" observables, i.e., real-valued functions on the cotangent 
bundle to the configuration space of the mechanical system. I have briefly indicated in [8,16] certain potentiali- 
ties for using this formalism for the purposes of nonlinear wave theory; I will now elaborate on this possibility. 

4. THE MOYAL BRACKET A N D  PSEUDODIFFERENTIAL OPERATORS 

Let q and p denote real variables. Let ~ denote all formal "Laurent" series of the form: 
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A~ 

A = ~ a,(q)p% (4.1) 

where N is any integer and q ~ a n  (q) is a C ~, real-valued function. Consider ,~ as a real vector space. Tensor 
products will be defined with the real numbers as scalars. Let 

be the linear map defined by the following formula: 

0A2 OAI@OA2 OAI@ (4.2) 
°t(Al@A2) = ~ 0q oqq ~p 

Let M: F® F ~ F be the linear map defined as follows: 

M ( A  1®A2) = A iA2. (4.3) 

(Note that products of two formal "Laurent" series of the type (4.1) can be defined by the usual formulas; it is 
this product which is indicated on the right hand side of (4.3).) Set 

A~ # A z = ~,, -~.Mod(A,®A2). (4.4) 
j=0 

It is readily seen that this product makes ~ into a real associative algebra. (This is the "Moyal" version of the 
pseudodifferential algebra of GEL'FAND, DIKKI, and MANIN [18-20].) Let J{ be the set of all f E ~ of the 
form 

f =  ~,,a,,(q)p" (4.5) 
n=0 

J{ then forms a subalgebra of ~:; it is the "Moyal" version of what LEBEDEV and MANIN [21] call the Vol- 
terra operators. 

Let S be the set of all A E ~ of the form 

A = p2 + a (q). (4.6) 

The elements of the form (4.6) are the "Moyal" versions of the Sturm-Liouville operators. It has been shown 
in [7,8 (Part B)] that B: ~ ~ ~ can be chosen so that 

3 B ( A ) =  p3 + ~ a, 

1 da 6 d3a = K ( a ) ,  (4.7) 
[B(A),A] = ~ a ~q + dq 3 

for A 
Thus, 

E ~ of the form (4.6). a ~ K ( a )  is then a nonlinear, third order differential operator in functions of q. 
the solutions of the differential equations 

DA 
- - =  V ( A )  ~ [ A , B ( A ) ]  

dt 

are of the form 

A ( t ) = p 2  + a~, 

with 

°qa---L = K(a ) :  
Ot 

(4.8) is the Korteweg-de Vries equation. 

(4.8) 

However, we can, in parallel with the work of GEL'FAND and DIKII [18,19], choose C (A) to commute 
withA, forA E $, and such that 

B ( A )  - C(A)  C J(. (4.9) 

In fact, it is readily seen that 

C(A)  # C ( A )  = A # ' A  # A, (4.10) 
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i.e., 
C(A) = A 3/2, 

if the 3/2 power is interpreted in the Moyal algebra sense. (In the work of Gel'fand and Dikii, it is defined 
relative to slightly different "pseudo-differential operator" algebra.) 

Thus, we see that everything runs in parallel with the "Toda lattice", as treated in Sec. 2. However, the 
Lie algebra ~ in which this game is now played is infinite dimensional, and is not graded, but is "filtered" by 
powers of p with the algebraic structure (defined by the Moyal bracket) compatible with this filtration. 

5. FINAL REMARKS 

The theory of nonlinear waves--and its amazing relation to linear mathematics via Inverse Scattering--has 
provided a rich collection of problems in mathematics and at all levels. Most of the work has been at the level 
of analysis; there are also exciting ramifications into geometry and Lie theory, which go to the heart of the rela- 
tion of these areas of mathematics and the theory of differential equations. Now, Lie himself was strongly 
motivated by this relation, but it has been obscured in work of modern times. Obviously, the underlying prin- 
ciple here is: 

In any problem involving differential or integral equations which is "soluble", look for the 
mechanism in terms of Lie groups. 

In nonlinear waves, these Lie groups appear in much more subtle (and interesting) ways than in more tradi- 
tional areas of Lie theory. For example, one point of view [5,7] is that the "soluble" systems (e.g., Korteweg- 
de Vries, sine-Gordon) can be recast to involve a Lie group (e.g., SL(2,R)) so that the solutions of the 
differential equations correspond to submanifolds of the Lie groups. We have only begun to explore the conse- 
quences of this principle! 
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In recent years, a new method of mathematical physics has emerged. This method, which we shall refer 
to as the Inverse Scattering Transform fiST), allows us to solve certain physically significant nonlinear evolu- 
tion equations. In one dimension, some of the interesting equations are: the Korteweg deVries (KdV), 
modified KdV, sine Gordon, nonlinear Schr/Sdinger, self-induced transparency, three-wave interaction equations 
etc. It is certainly significant that these ideas apply also to certain discrete nonlinear wave problems; i.e. equa- 
tions of differential-difference (e.g. Toda Lattice, a differential-difference nonlinear SchrSdinger equation, the 
self-dual network, etc.) and partial-difference (e.g. numerical schemes) type. (For a detailed review of this 
work the reader may consult [1]). Some of the ideas involved with this new solution method have been 
extended to higher dimensions (see, for example, [1]-[3]). In these proceedings, I will describe certain "lump" 
type solutions to the so called Kadomstev-Petviashvili equation (a two dimensional generalization of the KdV 
equation) and Kaup will discuss certain aspects of the multidimensional three wave equations. In any event, 
while the full power o f l S T  applies in one dimension, important advances are being made in multidimensional 
problems. It should also be mentioned that ideas originating from I.S.T. have successfully been used in lower 
dimensional problems, namely certain ODE's.  In these proceedings, Segur will discuss how linear integral 
equations can be used to solve certain classical ODE's  (i.e., Painlevd transcendents). These ODE's  are similar- 
ity solutions of the related nonlinear evolution equations (solvable by IST) [4]. 

As is well known, many problems exhibiting interesting behavior are modeled by nonlinear evolution 
equations. In most  cases, the analyst is reduced either to finding special solutions, or, essentially, to linearizing 
the system (perhaps about some special nonlinear solution) and exploiting the smallness of some parameter. 
The remarkable new development in the subject has been the discovery of a method which can exactly solve 
certain nonlinear evolution equations.  The method uses the results of scattering and inverse scattering theory. 
This method is conceptually a generalization of Fourier analysis. 

The method was originated by GARDNER,  GREENE, KRUSKAL, and MIURA [5], (an extradordinary 
research contribution) and requires some understanding of scattering theory. They showed that associated with 
the Korteweg-deVries equation (KdV) [6] 

u t + 6uu x + u~_~ = 0 (1) 

is a linear eigenvalue problem 

V~x + (k 2 + u(x, t))v = 0. (2) 

The latter is the well-known Schr~Sdinger eigenvalue problem and has been extensively studied by physicists and 
mathematicians. The eigenvalues, and the behavior of the eigenfunctions as Ixl ~ do determine the "scattering 
data", S(k ) ,  which depend on the potential u. The direct scattering problem maps the potential into the 
scattering data. The inverse scattering problem reconstructs the potential from the scattering data. For 
appropriate boundary conditions this amounts  to solving an integral equation, often referred to a s  the 
Gel 'fand-Levitan integral equation. 

We now outline the conceptual steps in order to obtain the solution. At the initial time, we are given 
u (x, 0), decaying sufficiently rapidly as Ix[ ~ oo. The direct scattering problem yields the scattering data at the 
initial instant, S(k,O). For later times, even though u (x,t) evolves according to a nonlinear partial differential 
equation, the required parts of S(k, t) satisfy simple equations. One part of S(k, t), the eigenvalues, do not 
depend on time, and for the other portion the role which was played by the dispersion relation in the linear 
problem is now played by the dispersion relation of the linearized problem. We are easily able to compute 
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S(k, t ) .  From this, one recovers the solution of the evolution equation, u(x, t ) ,  by mapping back to physical 
space via the inverse scattering equations. Schematically, the procedure can be summarized as follows: 

co(~) 
u(x,O) ---> S(k,  O) ~ >  S(k, t)  ---> u(x,t) .  

The procedure is conceptually analogous to Fourier analysis. Here, the scattering data plays the role of the 
Fouier transform, and the inverse scattering equation the inverse Fourier transform, ABLOWlTZ, KAUP, 
NEWELL, and SEGUR [7] have termed the technique "the inverse scattering transform-Fourier analysis for 
nonlinear problems." 

The soliton (first discovered by ZABUSKY and KRUSKAL [8]) is an important special solution of such 
an evolution equation. The soliton is such that it retains its identity despite nonlinear interactions. The general 
solution is usually quite complicated. However, the asymptotic (t --* oo) character of the solution is fairly sim- 
ple. For appropriate initial data, one obtains a finite number  of solitons and an algebraically decaying back- 
ground [1]. 

The method is quite powerful, but also quite specialized. Certainly, not all nonlinear evolution equations 
can be solved by this method, but it is remarkable that a subclass of those that are solvable are physically 
significant evolution equations. For example, the KdV equation arises in systems which are weakly dispersive 
and weakly nonlinear (quadratic nonlinearity). 

The work of ZAKHAROV and SHABAT [9] showed that the method of solution for KdV was indeed no 
fluke. Employing methods developed by LAX [10], they showed that the nonlinear Schrtidinger equation, 

iut + uxx + ku2u * = 0 (3) 

(here u* is the complex conjugate of u) is intimately associated with a new eigenvalue problem, and, using 
inverse scattering, the equation (3) can be solved. This equation also has wide application. Here, u (x,t) is the 
complex amplitude of an envelope of an almost monochromatic wavetrain propagating in a dispersive, weakly 
nonlinear medium. 

This work led other researchers to the solution of the Sine-Gordon equation (see also [1,7]) (a) in "light- 
cone" coordinates: 

uxt ~ sin u (4a) 

or (b) in laboratory coordinates: 

u.  - u~ + sin u = 0, (4b) 

the modified KdV equation 

ut +- 6U2Ux + u ~  = 0, (5) 

as well as others (SIT, three  wave equation etc.). As briefly mentioned earlier, certain interesting discrete non- 
linear equations are also solvable: those of the Toda Lattice 

e-(Un-Un_l) -(u +l-U ) u,t, = - e ° " ,  (6) 

a differential-difference NL SchrSdinger equat ion,  

iunt + u,+ 1 + Un_ 1 - -  2U n "4 -  kunu~(Un+ 1 "[- U n _ l )  , (7) 

as well as partial difference schemes (see, for example, [1]). 

Generally speaking, IST is effective when the following is true [10]. Consider two operators L,M; L is a 
spectral operator (one which is "rich" enough to employ inverse scattering) 

Lv  = Xv (8a) 

and M governs the time dependence of the eigenfunctions: 

vt = Mv.  (8b) 

Taking 0t of (8a) yields 

Ltv + Lvl = Xtv + hvt. (9a) 
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Using (8b) gives 

Ltv + L M v  = krv + MLv ,  (9b) 

or 

(L t + [L,M])v = Xtv, (9c) 

where [L,M] =- L M  - ML is the commutator of L and M. Hence, if h t = 0 ("isospectral flow"), then 

L t + [L,M] = 0. (10) 

If (10) is a nontrivial evolution equation, then it will be solvable by IST. 

In this note we shall review how this method applies to the KdV equation, as well as discussing some 
interesting special solutions. For KdV, the operator L = 0x 2 + u (x, - 1 ) ,  i.e., the Schr6dinger eigenvalue equa- 
tion (2) (h = k2). The time dependence (the operator) Mis  given by 

v t = A v + Bv~, 

A = ux, B = 4k 2 - 2u. (11) 

Requiring OMOt (or Ok/Ot) = 0 insures that (10) is equivalent to the KdV equation (1). (Alternatively we 
satisfy the compatibility condition v:~t = vt=.) It should be r~oted that, given a suitable operator L, there is a 
simple deductive method to obtain the M operator associated with a nonlinear evolution equation [1]. 

The solution of (1) corresponding to u ---' 0 as I x l  - -  oo proceeds as follows: 

(i) At t = 0 we give u (x, 0) and solve the direct scattering problem (8) for eigenvalues (of which there 
are a finite number of discrete ones, k = ikn, and a continuum for k real) and specific information about certain 
eigenfunctions, called the reflection coefficient r(k,O), and bound-state normalization constants Cn.0 
[1,5,11,12]. 

(ii) Equations (11) allow us to find how the scattering data evolves in time. It may be deduced that 

k n = const.,o (k,t) = p (k, 0) e 8ik3t, Cn (t) = Cn, 0 e4k3t (12) 

We refer to (12) as the scattering data at any time t:S(k, t) .  

(iii) The theory of inverse scattering shows that, given the scattering data, we may reconstruct the poten- 
tial u. The essential results are as follows. First, given (12), compute 

1 u F(x; t )  = ~ f ~  v (k , t )d~dk  + ]~ Cn2(t)e -g°x. (13a) 
l 

Then solve the integral equation (y > x) 

K(x,y; t )  + F(x  + y;t) + f x  ~ K(x , z ; t )F ( z  + y;t)dz = 0 (13b) 

for K(x,y; t ) .  The potential is reconstructed (hence the inVersion) by the relation 

u ( x , t )  = 2 d K ( x , x ; t ) .  (13c) 
dx 

(13) constitutes the method of solution for KdV. Special soliton Solutions corresponds to having no continuous 
spectrum. In the case r (k, 0) = 0 the integral equation is degenerate and was solved in closed form by KAY 
and MOSES [13]. See also [5]. The results of such a calculation show that the N-soliton solution is given by 

02 
u (x,t) = 2~x2 log det(l  + A), (14a) 

where 

" C l ,  o C : , o  . . _  
Aij = 8ij + ~ e x p ( - - ( K ~  + K ) x  + 4Ki3t + 4KflK).  (14b), 

Thus, a one soliton solution has the form: 

u = 2K~sech2Kl(X - 4K~t - Xo). (14c) 
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The N-soliton solution corresponds to waves which asymptotically (t ~ oo) have the form (14c). As men- 
tioned earlier, these waves interact in such a way that they maintain their identities in the asymptotic limit. 
HIROTA [14] has developed a procedure by which one can develop formulas analogous to (14) without the 
need for inverse scattering. He has shown that the N-soliton solution has the form: 

U ( x , t )  exp ~i~i + ~ A 0 ~  j (15a) 
~0.1 K<i<j I 

where the first sum is over all/.L i, i ffi 1 . . . . .  N, p,j ffi 0,1, and 

~j  ffi k~x - ki3t - "0o, 

I ki - k j  l 2 
exp(Au) = [ ki + k# ] ' (15b) 

"O0 ffi arbitrary constant. 

Besides all of this, there are many other special features associated with these nonlinear evolution equa- 
tionS, for example, (i) an infinite number of conserved quantities [15]: 

0 O F i f f i O  ' ~-~T/+ _ _  ffi 1,2, .. . ,  

1 2 for KdV, where T 1 ffi u, T 2 = u 2, T 3 ffi - ~ u  x - u3, . . . . . .  

(ii) long-time (t ~ oo) asymptotic states [1,16]; (iii) B~icklund transformations [17]; (iv) complete integrability 
[18]; (v) periodic boundary-value problems [19]; (vi) direct methods to establish that linear integral equations 
solve nonlinear evolution equations [2], [20]; (vi) connection with ODE's of Painlevd type [4]; etc. 

In what follows, we shall briefly discuss some other interesting solutions to the KdV equation (other non- 
linear evolution equations also have such special solutions). First, we shall consider the rational solutions. A 
one-soliton solution given by (14c) transforms to 

u = - 2 K ~ c o s e c h 2 K l ( X  - 4 K 2 t )  (16) 

if we take e Klx° = L Note that by taking the limit K 1 ~ 0, u simplifies to: 

2 d 2 
2 -~- log  x. (17) u x2 

It turns out that (17) is the first of a sequence of rational solutions given by 

d 2 
u = 2 -~- log  0N. (18a) 

Whereas the first few OAr are determined easily enough by long-wave limits as in (17), the higher ON are easily 
derived by limiting forms of the B~icklund transformation. The first few are given by 

00ffi 1, 0 2 ~ x  3 +  12t, 

01 ffi x, 03 ~ x 6 + 60x3t - 720t 2, (18b) 

and the general recurrence relations satisfy 

D~ON+I " ON_ 1 ffi (2N + 1)0 2, (19a) 

(Dt  + D 3 ) O N  • 0N+I = 0, (19b) 

where D~ (similarly for D t) is defined by 

D x a  • b ~ (Ox - O ~ , ) a ( x ) b ( x ' ) l x  ~ x '  

in the notation introduced by HIROTA [14]. The original work on rational solutions has appeared in [21], fol- 
lowed also by [22]. The work described here, using limits of soliton solutions and B~icklund transformations 
has appeared in [23]. 

It is interesting to note that the above rational solutions may be "perturbed" in a rather general way. 
Specifically, it turns out that for the KdV equation we may solve for the perturbation v(x,t) , where 

u ( x , t )  ffi Uo(x , t )  + v(x,t), (20) 
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and u(x,t),  Uo(X,t) satisfy KdV (6). Here, Uo(X,t) is a special solution of the KdV equation. For example, 
taking Uo(X,t) = -2Ix  2 (this corresponds to scattering with a centrifugal barrier), then to obtain v(x,t) we first 
solve the linear integral equation 

K(x,y,t) + F(x,y,t) + fx ~ K(x,z;t)F(z,y;t)dz = O, 

where 

I . ,11 , 1 ]-kn(X+y)+Sk3k F(x,y;t) = f v r ( k )  1 + 1 + i--[-]eik(x+y)+Sik3tdk + 1 + + - -  e . (21b) 

Then, v(x,t) is obtained from 

d 
v(x,t) = 2-:-K(x,x;t) . (21c) 

If we have only "discrete" spectra, then we have a combination of rational and exponential solutions: 

d 2 
v = 2-~y2 log(xdet(l  + A)) 

A u = C~Cj + exp(- (Ki  + Kj)x + 4Ki3t + 4K3t). (22) 

When N = 1 , we have 

u =  2- -~ log  d2 xll+C~[K@x + - - ~ ] e x p ( - 2 K l x + 8 K 3 t )  (23) 

We refer to these solutions as quasi-solitons. They may have application to the solution of KdV on (0, oo). 
These solutions are singular at some location x = Xo(t) < 0, but not for x >/ 0. The above analysis appears in 
[24]. 

Next, we turn to discuss some results pertaining to multidimensional problems. It is now well known that 
some of the techniques of I.S.T. apply to problems of higher dimensions. For example, it is known that there 
are L,M operators associated with the so called Kadomstev-Petviashvilli ("two dimensional" KdV) equation: 

0~(ut  + + Ux~) + = 0 (24) 6uux O" Uyy 

and a two dimensional version of the nonlinear Schrbdinger equation 

iU k - -  Uxx d- Uyy = O ' U [ U l  2 "t- Uqbx,  ( 2 5 a )  

c r ~  + rbyy = - 2 ( l u  12)x, (25b) 

cr = +_ 1 and others (Three-wave problems etc. [1]). Moreover, it can be established that these equations are 
associated with linear integral equations [2], have N-plane-wave-soliton solutions, etc. 

It turns out that by taking long-wave limits of the plane wave soliton solutions certain algebraically decay- 
ing (in all directions) "lump" type solutions can be constructed [25,26]. A l-lump solution to (24) is given by 
(or = -I): 

(26) 
(x' +eRy ' )  2 + p?ya + 

where 

x ' =  x - (p~ + e?)t, 

y '= y +2Pet, 

and Pn,PI (P1 > 0) are constant. Alternatively, we may write u in the form 

d 2 
u = 2--7vlog F A, a3¢ ~ 

(27a) 



245 

where 

1 -Lump: 

2-Lumps: 

F 2=  0102 + B12, 

F 4 = 01020304 + B120304 + B130204 

+ B140203 + B230104 + B240103 

+ B340102 + B12B34 + B13B24 + BI4B23, 

0 i =  x + P i Y -  Pi 2t, 

12 
Bjj  = c r ( p  i _ p j ) 2 '  

N = 2 M ,  PM+i ~ Pi ° ( i  = 1 , 2  . . . . .  M ) .  

(27b) 

(27c) 

These solutions are rational functions of x,y , t .  As Ixl, lyl ~ 0% u ~ 0(1/x 2, l/y2). They produce no phase 
shift upon interaction. Analogous solutions may be constructed for the two-dimensional version of the non- 
linear Schr~dinger equation (25) (26). It should also be noted that the plane wave solutions are unstable when 
o- = - 1 ,  and stable when o- = +1 .  (Real lump-type solutions are not constructed by this method when tr 
+ 1.) It can be expected that the complete solution to these special multidimensional problems will be found. 

Finally, we briefly note that there is an important connection between nonlinear evolution equations solv- 
able by IST and ODEs without movable initial points. This connection and its ramifications are considered in 
[4]. For example, consider the modified KdV equation: 

ut - 6u2ux + ux~ = 0. (28) 

(28) has a similarity solution of scaling type: 

1 w(z), z = x (29) 
u (3t)1/3 (3t)d3,  

where W ( z )  satisfies 

w" = 2w 3 + z w  + a ,  (30) 

a = constant. (30) is a classical O.D.E. discovered by Painlev6 (see [27], Chap. 14). It is one of the so called 
six "irreducible" Painlev6 transcendents. It turns out that the methods of IST can now linearize this equation! 
Later in these proceedings, Segur will discuss these and other aspects in more detail. 

REFERENCES 

[1] M.J. Ablowitz: Stud. Appl. Math., 58, 17 (1978) 
[2] V.E. Zakharov, A.B. Shabat: Functional Anal. Appl. 8 ,226  (1974) 
[3] H. Cornille: "Solutions of the nonlinear three-wave equations in three spatial dimensions," preprint, 1978, 

to be published in Phys, Lett; D.J. Kaup: "A method to solve the initial value problem of the three-wave 
equations in three dimensions," preprint (1978) 

[4] M.J. Ablowitz, A. Ramani, H. Segur: Lett. Nuovo Cimento, 23, 333, 1978; M.J. Ablowitz, A. Ramani, 
H. Segur: "A connection between nonlinear evolution equations and ordinary differential equations of 
Painlev6 type I," preprint; M.J. Ablowitz, A. Ramani, H. Segur: "A connection between nonlinear evolu- 
tion equations and ordinary differential equations of Pain[ev6 type II," preprint 

[5] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura: Phys. Rev. Lett. 19, 1095 (1967); C.S. 
Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura: Comm. Pure Appl. Math. 27, 97 (1974) 

[6] D.J. Korteweg, G. DeVries: Phil. Mag. 39 ,422  (1895) 
[7] M.J. AblowRz, D.J. Kaup, A.C. Newell, H. Segur: Stud. Appl. Math. 53 ,249  (1974) 
[8] N.J. Zabusky, M.D. Kruskal: Phys. Rev. Lett. 15 ,240  (1965) 
[9] V.E. Zakharov, A.B. Shabat: Sov. Phys.--JETP 34, 62 (1972) 

[10] P.D. Lax: Comm. Pure Appl. Math. 21 ,467  (1968) 
[11] L. Faddeev: J. Math. Phys. 4, 72 (1963) 
[12] P. Deift, E. Trubowitz: "Inverse scattering on the line," Comm. Pure Appl. Math. 32, 121 (1979) 
[13] I. Kay, H.E. Moses: J. Appl. Phys. 27, 1503 (1956) 
[14] R. Hirota: Phys. Rev. Lett. 27, 1192 (1971) 
[15] R.M. Miura: J. Math. Phys. 9, 1202 (1968) 
[16] M.J. Ablowitz, H. Segur: Stud. Appl. Math. 57, 13 (1977) 



246 

[171 
[181 
[191 

[201 
[21] 
[22] 
[23] 
[24] 

[251 
[26] 
[27] E.L. Ince: 

H. Chen: Phys. Rev. Lett. 33,925 (1974) 
V.E. Zakharov, L.D. Faddeev: Functional Anal. Appl. 5, 10 (1971) 
B.A. Dubrovin, V.B. Matveev, S.P, Novikov, Russian Math. Surveys 31, 59 (1976); E. Trubowitz, 
H. McKean: to be published 
H. Cornille, J. Math. Phys. 17, 2143, (1976) 
H. Airault, H.P. McKean, J. Moser: Comm. Pure Appl. Math. 30, 1 (1977) 
M. Adler, J. Moser: Commun. Math. Phys. 61, 1 (1978) 
M.J. Ablowitz, J. Satsuma: J. Math. Phys. 19, 2180 (1978) 
M.J. Ablowitz, H. Cornille: "On solutions of the Korteweg-de Vries equation," preprint (1979), to be 
published in Phys. Lett. 
S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, V.B. Matveev: Phys. Lett. A 63,205 (1977). 
J. Satsuma, M.J. Ablowitz: J. Math. Phys. 20, 1496 (1979) 

Ordinary D~fferential Equations (Dover, New York, 1944) 



DETERMINING THE FINAL PROFILES 
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Based on a result of  Cornille, a complete inverse scattering solution for the full three-dimensional three- 
wave resonant interaction is now possible. We illustrate this by showing how one may use inverse scattering 
techniques to determine the final profiles from the initial nonoverlapping profiles. 

In what should be considered to be a major breakthrough, CORNiLLE [1] was able to lay the basic 
groundwork necessary for obtaining a complete inverse scattering solution to the full three-dimensional three- 
wave resonant interaction (3D3WRI), whose equations in characteristic coordinates are 

O i q i  * * = Y i q  j q  k" (1) 

In (1), i,j, and k are to be taken to be cyclic in 1,2,3 (thus, there actually are three equations contained in (1)), 
the q's are the three envelope amplitudes, 0; = O/OXi where the three X;'S are the three characteristic coordi- 
nates, defined by 

O i -  - Ot - v; • V ,  (2) 

and the three y ' s  carry the signs of the coupling constants (3'; = -+ 1 etc.), where we assume that these cou- 
pling constants have been scaled to a unit magnitude. Cornille worked out all of his results using ordinary 
space-time coordinates. Since he did not use characteristic coordinates, many of the natural symmetries in his 
results were not apparent at that time. We [2] then recast his results into characteristic coordinates form, 
obtained considerable simplifications, and were able to discuss a simple, but quite important class of  initial 
value problems. This is the class of solutions when the initial profiles are nonoverlapping. 

' s  

Before continuing with the method of solution, we should first briefly describe the characteristic coordi- 
nates which we shall use and the qualitative nature of  the solution of (1) when viewed in these coordinates. 
Equation (2) defines these characteristic coordinates, provided we introduce a fourth coordinate X4, defined in 
some suitable manner. For example, if we have a time-independent problem with all three group velocities 
independent, then we could choose X4 = t, since no derivatives of time would occur in (1). In general, X4 is 
defined by 

O;X4 = 0, (3) 

and is simply a fourth coordinate which is independent of the three characteristic coordinates. As an explicit 
example, consider the frame where v2 = 0. Now, rotate the x ,y ,  and z axes so that vl is parallel to ~ and v3 lies 
in the x - y  plane. In this case, we could take 

X 4 =  z ,  

and the three characteristic coordinates may be taken to be given by 

X = - -  V l x X I  - -  V 3 x X 3  , 

y = -- V3yX3 ~ 

t = -- X1 -- X2 -- X3. 

(4a) 

(4b) 

(4c) 

(4d) 

Note that at a fixed t the sum of the characteristic coordinates is a constant, which defines a plane in the three- 
dimensional characteristic coordinate space. 

Consider the solution of (1) in any region where qj or q~ are zero. We have that q; may simply be any 
arbitrary function of Xj and Xk, which we assume to be localized about Xj = Xg = 0. This solution is now like a 
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tube localized about the XJ axis. At a fixed Xj and Xk, its value does not change as Xi changes, which by (4d) 
corresponds to changing t. The initial profile is obtained for X~ 400 and the final profile is obtained when 
Xi ---' - oo .  (Which for q F 0  or qg = 0 is the same as the initial profile.) 

Of course, the above considerations only apply when qj = 0 or qk = 0. We now allow the other two 
envelopes to be present and arranged as in Fig. 1. Here we have three interacting beams, with each initial 
profile being obtained as the corresponding characteristic coordinate approaches oo. Note that these profiles 
never change until the other two profiles overlap. When this happens, the profile changes and, as the charac- 
teristic coordinate goes to minus infinity, we obtain the final profile. 

We shall concentrate on the question of how one may obtain these final profiles from the initial profiles 
by means of the inverse scattering tl'ansform. The basic idea is essentially the same as that used in doing the 
same for the two-dimensional solution [3-5]. Namely, we shall map the three initial profiles into scattering 
data, determine the relation between the initial and final scattering data, and then reconstruct the final profiles 
from the scattering data. 

A scattering problem for the 3D3WRI ideally suited for characteristic coordinates was first given by 
ABLOWlTZ and HABERMAN [6], which, strictly speaking, is only a rearranged form of the original 
ZAKHAROV and SHABAT ]7] problem. Reducing the former to its most basic form gives 

Okt~ t = 'y kq*j t~ k,  (5a) 

Oi~l k = "~iqj~li, (5b) 
where i,j, and k are cyclic. The general solution of (5) is determined by specifying the three functions 
gi(x~) = qJi(Xt, Xj  ""  o% X~ --" oo). In place of the three arbitrary functions, we may use gi(xi)  = egX~, which, 
upon taking the Fourier transform with respect to ~, will give us the general solution. Thus, we define the 
three fundamental solutions of (1) by 

e n(g~;Xi, X j - -  oo, x k ---, oo) = 8he it'x', (6) 

where n = 1, 2,3. Without proof, we shall simply state that this solution exists for ~ real when each profile 
satisfies [8] 

Iq , (x , ,Xj ,Xk)I  < V ( x )  V ( x k ) ,  (7a) 

for all values of X i, where 

f ~ d s [ V ( s )  + V2(s) + [sly(s)] < oo. (7b) 

Furthermore, each fundamental solution also has certain analytic properties with respect to ~ [8]. We will not 
need these here, but will give a simplified version of them later. 

Let us return to (5) and consider the regions in our characteristic space where qj and qk are both zero. 
From Fig. 1, one sees that this is where [X~[ is sufficiently large. In the region where X~ ~ 0% (5) gives 

Oj$~ ffi y j O * # ~ ,  (8a) 

0k¢/~ = 0j~0? = 0 = 0 # ~  = Oiq, y, (9) 

where 

Qi(Xj ,Xk)  ffi lim q i ( x i , x j ,X g ) ,  (10) 

and is simply the initial profile. From (6), (8), and (9), we have that the ith fundamental solution is simply 

qJ/(¢,X) = 8/e~¢×', (11) 

where r = i,j,k. For the other two fundamental solutions, we have that they are now independent of Xi and are 
determined by the solution of (8). Thus, the problem reduces to a simpler scattering problem [9], given by 

0jH~k = TjQSHL (12a) 

OkI"I~) ffi YkQiH,~, (12b) 

for n = j , k  where H is a function only of Xj and Xk, and 

H~k(~;Xj "-* °°,Xk) = ~#e g×k, (12c) 
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Hy (~ ;X j, X ~ ~ oo ) = 8]eieXJ. ( 12 d) 

Again, when Qj satisfies (7), one can show that the solution exists. 

Now, the scattering problem for (12) is not very difficult to work out. Figure 2 gives a graphic represen- 
tation of the n = j solution for (12). The central shaded area corresponds to the initial profile of Qt. The vert- 
ical solid lines correspond to ~ being propagated along its characteristics, which are parallel to the Xk axis. 
Note that, unless a given characteristic intersects the initial profile, nothing happens to it and it remains 
"unscattered." The dashed horizontal lines represent H~ being generated due to interaction of ~ with the ini- 
tial profile, Qi, and it travels along characteristics parallel to Xj. Thus, Hj k is only generated by those lines of 
which intersect the initial profile. 

From the Neumann-series solution of (12), one may determine that H # e  -~×" is analytic in the upper half 
~-plane and approaches 8# as I~1 --" oo One can define the scattering matrix by 

I "~  d h  n,~ - - "  i k x j  
l f f ( ¢ ; X ~ , X  k ---, - o o )  = 3 _ ~ - ~ ~ J  t ~ , ^ ) e  , (13a) 

I "~  d h  n~o - ,  iXXk H#(~;Xj '-* - - ° ° , X k )  = j _  " ~ g % , ^ ) e  , (13b) 

Referring to Fig. 2, we see that/z~ is simply the Fourier transform of H~ on the left, whi le /z / i s  the Fourier 
transform of ~ at the bottom. Note tha t /x j  must contain a part proportional to the Dirac delta function 
~i ( £ ' -  ~), since for large Ixjl there are "unscattered" lines. 

Directly from the conservation law 

0 k [yj/-/y(~) H~j ({;') "1 - Oj [3'kHff(~)/-/~k (~.;') "1 = 0, (14) 

one may show that 

p,#,, St - 3'/z~/.~t = L (15a) j r " j  

p.#/z# # - 3'/zf/.Lf t = I, (15b) 

/z#/zfl - 3'/~#/z~ # = 0, (15c) 

and 

/~j, p,j _ 3'/~ft/~f = i, (16a) 

/zg*/z k - y/z~tp,~ = / ,  (16b) 

where we are using a condensed operator notation (i.e., a product implies an integration, etc.), where 

I - -  2~'8(~ - ¢9 (17) 

and 

3' =- 3'j3'k. (18) 

We note that (16) corresponds to the orthogonality condition for the states H n and (15) corresponds to the clo- 
sure condition. Thus, these states are complete  for ~ real, and there are never any bound states for (12). 

Of course, our choice for (12c) and (12d) was arbitrary, and choosing any other corner of a square would 
have given equivalent results. We mention one other choice because we shall need the corresponding scatter- 
ing matrix. It is 

G](~ ;X ~, X k ----,oo) = 8 ]e~¢X J, (19a) 

Gg (~ ;X j - -  - ' x ' ,  X k ) = 8 ge iCx~, (19b) 

and the referred to scattering matrix is given by 

t "~  d h  n~ ~ iXxj Gf(~;Xj,Xk - - - - ° ° )  = j _  "~-~-vj t~,~.)e , (20a) 

Gff(~;Xj --* +oO,Xk) = f~ d-~h vff(~,h)eiXXJ. (20b) 
-~ z~r 

This scattering matrix is related to the first one by 



250 

v~ j k* (21a) = - - T V j ~ j  , 

v f  = ~-y/~*vj, (21b) 

and, most importantly, 

~J, vi* = v i* , , ) =  I, (22a) j j j t " j  

= ve/zg = L (22b) 

This last relation shows that/zJ and/xff possesses unique inverses, which is another consequence of the nonex- 
istence of bound states for (12). 

We shall now simply quote the major results for the inverse scattering problem of (12). From the above 
relations, one may show that the linear dispersion relations for the states H n are given by 

H/(Oe -gxj = 8/+ 27r f'--= ~ ' -  ~ Y[-= 2,r e v~(~ ,X)H~' (h), (23a) 

Hk(~)e-gX, = 8r k + i__Z_ f= ~ f ~  dh e-i~'xk, J'(x rqHJ.(k) (23b) 
2 , r r j _ ~ , _ ~ j _ o o 2 ,  r - x  . . . . . .  r - - ,  

for ~ in the upper half ~-plane. One may define a transformation kernel by 

HT(0e-gX, = 8 n + f o  ~ L r n ( S ; X j , x k ) e g S d s ,  (24) 

and from (23) and (24) one obtains for s > O, 

z Y0" L~(s;xj,Xk) + ET(s + X..X~) + dt E,~ (s + X.,t + ×~) Lp(t;xj,xk) = O, (25a) 

with the profile being recovered by 

Q~ (x~, ×D = -~,kL2(O;×j,×D, 
where 

(25b) 

(26a) Ej= O= EL 

e/ , (u,v)=f~ a_L f (26b) 
EjX(u, v) = yE/ ' (v ,u) .  (26c) 

Furthermore, one can show that the solution of (25) exists and is unique when the scattering matrices v and IL 
satisfy (15), (16), (21), and (22). 

So, as shown above, we can solve the scattering problem associated with (8), and the solution of (8) is 
then 

qt/(~;X) = 8~ ei¢×', (27a) 

for r = i,j,k, and then for n = .Lk, 

tkf(g;X) = H/n(g;Xj,Xk), (27b) 

tOf(/~;X) = 0, (27c) 

where r = .Lk. Note the extra subscript in (27b). We shall use the convention that the first subscript indicates 
which profile is to be used in (12). Of course, (12), (13), and (27) remain valid as we cyclically permute i,j, 
and k, provided we use this extra subscript to denote which profile. The same remains true of all the following 
relations, (14)-(26), once the extra subscript is included. 

Now we have all the necessary tools for determining the scattering matrix of the final profiles. The gen- 
eral approach can be seen by considering Fig. 1. There it is seen that everywhere, except for the interaction 
region localized about the origin, we are able to use the above solution (27) to determine the fundamental solu- 
tions of (3). For example, (27) gives the solution for X~ ~ oo. The solution for Xj ~ oo which matches onto 
this solution in their region of overlap (both X~ and Xj large) is similarly 

tOT(~;;X) =/-/j'~(~;Xk,X,) (28a) 

for n = Lk and r = Lk, and 
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~ / ( ~ ; X )  = a/e i~x j ,  (28b)  

where now r = i,j,k. Likewise, for Xk --~ o% we have 

tk;(~;X) = Hf,,(~;X~,Xfl (29a) 

for n,r = i,j, and 

~bf(~;X) = 8kei~Xk (29b) 

for r = i,j,k. 

The asymptotic forms of the solution to (3) as given by (27)-(29) give us one-half of the asymptotic solu- 
tion. The other asymptotic forms will depend on the final profiles, 

O_.i(Xj,Xk) = lim qi(xi ,Xj,Xk).  (30) 

All quantities depending on the final profiles will be indicated by a wavy line above them. Now consider the 
solution as X i ~ - o o .  The general solution will be a linear combination (due to completeness) of ale ~x~, 
[-I/,(~;Xj,Xk) and ~ ( ~ ; X j ,  Xk). To determine what components are present, we simply require the solution to 
match (28) as X~ ~ oo and (29) as Xk -"  oo. From this, one finds when X~ "-' -oo that 

t~i(~;X) = a i e  i~x i ,  (31a) 

~' dk n -:i -~  z'rr 

for n = j ,k,  where here and subsequently r = i, Ak. Similarly, one finds when Xj --' -oo that 

~k/(~;X) = 6/eiCxj, (32a) 

dX , -~ + f _ '  "~--~-/zi~(~, ) ~ ( ;Xk ,Xi ) ,  (32b) f '_ "~"~'~ki(~,x)Hj,(X;Xk,Xt) ~ dX , X [-I~ X 

for n = Lk, and when Xk '-* --oo that 

~ ( ~ ; X )  = ~ e~x~, (33a) 

~;(~;X) = f ~  dhl-tfl(~ X)H]~r(X;Xj Xj) + f L ~ i ~ ( ~ , k ) H i r ( k ; X " X f l '  (33b) 
J - ~  2~" ' 

where now n = i,j, 

To obtain the final relation, we now require (31)-(33) to agree in all regions where they pairwise overlap. 
From this we obtain only the relation (in condensed notation) 

• ÷ IJ, jkl.t, ik - -  ~k i l .~ jk  IJ, iktZjk = O, (34)  

which is true for n = i,j,k, and for i,j,k cyclic. Without proof, we shall simply state that one can solve the 
above for ~/k. One finds 

~~ ' t  Ji k it i ~',k =/z~j  v,~/zjk - ~/~3,j/zkflxjk, (35) 

with which one may construct the function ~{,  then solve (25) for L~, and finally for Qi. 

This is our main result at this time. We are still working on further aspects of  the problem, some of 
which I shall briefly mention. First, we have not shown that the /2 ' s  determined by (34) will satisfy (i5) and 
(16). Until this is done, it is not certain that the solution of (25) for Q~ necessarily exists. It is possible that 
for certain signs of the y ' s ,  singular solutions may arise. If this were the case, the /2 ' s  would not satisfy (15) 
and (16). Also, one should be able to determine from (34) the final values of  the infinity of  conserved quanti- 
ties in terms of their initial values. We should have this result shortly. Other aspects to be done include the 
total inverse scattering solution for (3), not just the asymptotic form obtained here [8]. One also wants to con- 
sider the general initial value problem when the initial envelopes are possibly overlapping [10]. Note that the 
result presented here can only be applied to the case when the initial envelopes are nonoverlapping, because we 
have assumed that we know the profiles as t ~ - • .  Lastly, there is the question of how all these results will 
mesh  in with the results for the two-dimensional case [5], where solitons and bound states frequently occur. 



252 

REFERENCES 

*Research supported in part by NSF Grant MCS78-03979 and ONR Contract N00014-76-C-0867 

[1] H. Cornille: J. Math. Phys. 20, 1653 (1979) 
[2] D.J. Kaup: "A method for solving the separable initial value problem of the full three-dimensional three- 

wave resonant interaction", to appear in Stud. Appl. Math. 
[3] D.J. Kaup: Stud. Appl. Math. 55, 9 (1976) 
[4] V.E. Zakharov, S.V. Manakov: Zh. Eksp. Teor. Fiz. 69, 1654 (1975) [Sov. Phys. -- JETP 42, 842 (1976)] 
[5] D.J. Kaup, A.H. Reiman, A. Bers: Rev. Mod. Phys. 51,275 (1979) 
[6] M.J. Ablowitz, R. Haberman: J. Math. Phys. 16, 2301 (1975) 
[7] V.E. Zakharov, A.B. Shabat: Funk. Anal. Prilo~,. 8, 43 (1974) 
[8] D.J. Kaup: "The inverse scattering solution for the full three-dimensional three-wave resonant interac- 

tion," to appear in Physica D. 
[9] Parts of this two-dimensional inverse scattering problem have also been solved by L.P. Ni~nik: lnverse 

Nonstationary Problem of Scattering Theory (Naukora Dumka, Kiev, 1973), 182 pp. 
[10] D.J. Kaup: "The solution of the general initial value problem for the full three-dimensional three-wave 

resonant interaction," to appear in the proceedings of the Soviet-American Soliton Symposium, Kiev, Sep- 
tember 2-14, 1979 



253 

Xk 

)¢j 

0 

N ~j 

Oi 

Xi 

Fig. 1. A diagramatic representation of  a possible three-dimensional solution in the characteristic-coordinate space, 
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Fig. 2. Graphical representation of  the n = j solution, of  (12). The initial profile is the shaded region in the middle. 
The vertical solid lines at the top correspond to the initial data, HJ = e i~xj. This component propagates downward to 
the bottom along vertical characteristics, and is, therefore, only modified in the region directly below the initial profile 
(scattering potential). The horizontal dashed lines represent the solution for H~ (the scattered wave) which is only 
nonzero to the direct left o f  the scattering potential. The tz ] (tz {) component of  the scattering matrix is simply the 
Fo'urier transform of  Hi (H~) at the bottom (left). 
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The previous two talks have discussed an application of the theory of scattering and inverse scattering that 
has developed only within the last dozen years: solving nonlinear partial differential equations by some version 
of the inverse scattering transform (IST). The equations that can be solved by IST are known to be very spe- 
cial, and one of the major outstanding problems in the field is to characterize these equations. The question is: 
What structure must a partial differential equation possess in order to be solvable by IST? One of the two main 
points of this lecture is a conjecture, formulated by Ablowitz, Ramani, and me, on the correct characterization 
of these equations. The other main idea is this: inverse scattering provides an exact linearization of certain 
nonlinear partial differential equations; it also provides an exact linearization of certain nonlinear ordinary 
differential equations. The ODE's that can be solved by this method have a simple characterization: they are 
of Painlev6-type (I will say what that means shortly). 

The material .presented in this talk summarizes some of the work done by Ablowitz, Ramani, and me over 
the last two years. Additional information can be found in [2-5]. 

The general outline of the talk will be as follows. First, we must define the Painlev6 property for ODE's, 
because everything else follows from it. Once you know what the Painlev6 transcendents are, I can show you 
that they are related to evolution equations solvable by inverse scattering transforms. Our conjecture about 
characterizing these nonlinear PDE's is then almost obvious; they must reduce to ODE's of Painlev6-type. 
What is less obvious is how to prove the conjecture, but we can give a partial proof. This relation between 
ODE's of P-type and inverse scattering transforms can be exploited to obtain information about either the ordi- 
nary or the partial differential equations, and I can give you some idea of the kind of results that you get rather 
easily by this approach. 

What is the Painlev6 property? Let's start with a linear ordinary differential equation, say of second 
order: 

d2w 
+ p ( z ) ~  + q(z)w = 0. (1) 

dz 2 

For suitable p (z) and q (z), this equation can be viewed in the complex plane and, as everyone here knows, the 
singularities of the solution of (1) can be found by examing p (z) and q (z) (e.g., [8], Chap. 15). In particular, 
the general solution has two constants of integration, 

w(z;A,B) = Awl(z) + Bw2(z), (2) 

and the location in the complex plane of the singularities of w(z) do not depend on A or B. The singularities 
of a linear differential equation are said to be fixed, because they do not depend on the constants of integration. 

Nonlinear differential equations lose this property. A very simple example of a nonlinear ODE is 

d___w_w + w2 = 0; (3) 
dz 

its general solution is 

w(z;zo)= 1 . (4) 
Z - -  Z o 

Here, zo is the constant of integration and it also defines the location of the singularity. This singularity is mov- 
able, because its location depends on the constant of integration. 

So while linear differential equations have only fixed singularities, nonlinear equations can have both fixed 
and movable singularities. About 100 years ago, mathematicians asked the following question: 
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Which nonlinear ODE's admit no movable branch points or essential singularities? 

Movable poles are allowed, as are fixed singularities of any kind. We will refer to this property as the Painlev6 
property, and equations that possess it will be said to be of Painlevb-type, or P-type. 

It turns out that the only first order equations with the Painlev6 property are generalized Ricatti equations: 

dw = po(z ) + p l ( z )w  + p2(z)w 2. (5) 
dz 

(A complete review of the nineteenth century work in this field may be found in [8], Chaps. 12-14.) 

Painlev6 and his coworkers were able to answer the question comprehensively for second-order equations 
of the form 

I dz 2 = --~,w, , (6) 

and w, and analytic in z. They showed that out of all possible equations of the form where F is rational in 

(6), only 50 canonical equations have the Painlev6 property of no movable branch points or essential singulari- 
ties. Further, they showed that 44 of these equations can be reduced to something already known, such as 
elliptic functions. That left six equations that defined new transcendental functions, called the Painlev6 tran- 
scendents. The first four of these are: 

d2w 
dz 2 = 6w 2 + z, PI 

d2w = 2w 3 + z w + t ~ ,  
dz 2 PII 

dz 2 = w [ d z  I z [ d z J  + l(c~w2+[3)+z'w3+-'z w PIII 

1 I wl 3w3 
dz 2 2 w [ d z  " + T  + 4 z w 2 + 2 ( z 2 - ~ ) w + f l - - w  PIV 

There are two more. 

The question of which equations have the Painlev6 property is appropriate at any order, but comprehen- 
sive results are available only at the first and second order. 

That is all history. What does it have to do with inverse scattering? The best way to answer that is to 
state our conjecture. 

Every nonlinear ODE obtained by an exact reduction of a nonlinear PDE solvable by some inverse 
scattering transform has the Painlev6 property. 

Here are some examples. The Boussinesq equation 

lU2] 1 (7) 
u , =  u~ + T + - ~ u ~  xx 

is a nonlinear PDE solvable by IST [12, 14]. An exact reduction to an ODE may be obtained by looking for a 
traveling wave solution: 

u(x,t)  = w ( x -  e t )=  w(z) .  

Then (7) becomes 

[w_;l ,w . . . .  (1 - -  C2) W " +  Jr- ~ = O, (8 )  

which can be integrated twice. Depending on the constants of integration, the result after rescaling is either 

w" + 2w 2 + a = 0 or w" + 2w 2 + z = O. 

The first possibility defines an elliptic function, whose only singularieties are poles. The second possibility is 
the equation for PI. In either case, the ODE has the Painlev6 property. So the PDE solvable by inverse 
scattering reduces to an ODE of P-type 
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Another  example is the modified KdV equation 

ut - 6U2Ux + u~= = 0, (9) 

which can be solved by IST [13]. An exact reduction to an ODE may be obtained by looking for a self-similar 
solution: 

u ( x , t )  = ( 3 t ) - 2 / 3 w ( z ) ;  z = x / ( 3 t )  1/3, (10) 

w " ' -  6 w 2 w  ' -  ( z w ) ' =  O. 

This can be integrated once: 

w " =  2w 3 + zw + a .  PII 

Again, the ODE is of P-type. 

The sine-Gordon equation 

Ux, = sin u (11) 

can be solved by IST [1]. It has a self-similar solution 

u (x , t )  = f ( z ) ,  z = xt. (12) 

If we set w (z) = exp(if) ,  then 

1 (w 2 _  1). w " =  l ( w ' ) 2 -  l ( w ' )  + "~z PIII 

Again, the ODE is of  P-type. 

The derivative nonlinear Schr6dinger equation 

iqt = q= - 4 iq2(q*)x  + 8[ql4q (13) 

can be solved by IST [10]. Its similarity solution eventually reduces to Pw. We have checked an enormous 
number  of examples. In every case we checked, PDE's  that can be solved by IST reduce to ODE's  of P-type 
and PDE's  that are not solvable by IST (e.g., this may be determined by observing numerically that two solitary 
waves do not interact like solitons) reduce to ODE's  that are not  of P-type. 

So there is some kind of relation between partial differential equations solvable by IST and ordinary 
differential equations of P-type. This relation can be used to examine either the ODE's  or the PDE's. I can 
demonstrate how it helps in the study of the ODE's  with the modified KdV equation, (9), and PII- The last 
step of IST, the inverse scattering part, goes like this. F ( x , t )  satisfies a linear partial differential equation 

Ft + F~,  = 0, (14) 

subject to some boundary and initial conditions. Then, K ( x , y ; t )  satisfies a linear integral equation of the 
Gel'  fand-Levitan-Marchenko type 

g(x,t) = F(x + y) + f f K(x,z)F(z + s)F(s + y)dzds, y >1 x. (15) 
x x 

Once K is known, then q (x , t )  = K ( x , x ; t )  satisfies mKdV: 

qt - 6q2qx + qxxx = O. 

In the full IST treatment, F depends on the initial data of q (x, 0) through the direct scattering problem. 
Here, we simply start with F and force everything to be self-similar: 

= x / ( 3 t )  1/3, ~ = y / ( 3 t )  1/3, (16) 

F ( x , t )  = ( 3 t ) - l / 3 F ( ~ ) , K ( x , y ; t ) =  ( 3 t ) - l / 3 K ( ~ , ' O ) .  

Then, (14) becomes a linear ODE, 

F'"(~:) - (seF) ' =  0, 

and a one-parameter family of solutions is 
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where Ai (~¢)is the Airy function. The integral equation (15) becomes 

K(~"o)= r A +'-4  e 

The Airy function decreases rapidly as its argument becomes large, so the integral term in (18) is very well- 
behaved. Therefore, it is relatively easy to solve (18)for  ~ >/~.  On "0 = ~, the solution of (18) satisfies the 
self-similar form of mKdV, viz. Pn: 

d-~2 K (s¢,~ ¢) = 2K3(s¢,~ ¢) + ~:K(s¢, ~). (19) 

(Two different proofs of this fact are given in [4] and [5].) The point here is that (18) is an exact linearization 
of Pn: every solution of the linear integral equation also solves PH. The general solution of (19) involves two 
arbitrary constants; the linear integral equation gives a one parameter (r) family, which includes all of the 
bounded real solutions of (19). 

You may recall that the most convenient way to obtain global information about solutions of linear 
differential equations is to replace them by linear integral equations. The same thing seems to  be true for these 
nonlinear equations. Global information about the bounded solutions of Pn comes out of the integral equation 
(18) quite easily. Details about this global description of Pn can be found in [4] and [5]. 

Here I have concentrated on Pn, but clearly the idea is not so restricted. Any ODE that is an exact reduc- 
tion of a PDE solvable by inverse scattering has an exact linearization in terms of a linear integral equation like 
(18). If your objective is to study the ODE, then the linear integral equation gives some of the information 
you seek quite easily. 

But suppose your objective is not an ODE but a PDE. Suppose you have been staring at a particular par- 
tial differential equation for three days, and you want to know whether or not it can be solved by IST. Now we 
are back to the conjecture: reduce it to an ODE by looking for a traveling wave or a self-similar solution, and 
determine whether the ODE is of P-type. If the ODE is not of P-type, then we conjecture that the PDE cannot 
be solved by IST. But it is hard to place much confidence in such a test unless you have some idea of why it 
should work. So let me give you a partial proof of why this test actually works. 

Consider a linear integral equation of the form 

K(x,y) = F(x + y) + fx=K(x,z)N(x;z,y)dz, y >t x, (20) 

where F vanishes rapidly for large values of the argument and N depends on i v. For example, for the 

N(x,z,y) = "Jx ~ F(z + s)F(s + y)ds. 

Other choices are also possible. We want to show that every solution of a linear integral equation like (20) 
must have the Painlev6 property. Then if K also satisfies an ODE, the family of solutions of the ODE obtained 
via (20) necessarily has the Palnlev6 property as well. So the Painlev6 property is not out of the blue, it is a 
consequence of the linear integral equation. 

Very roughly, the proof goes like this (for details, see [3]): 

(i) F satisfies a linear ODE, and therefore has no movable singularities at all. 

(ii) If F vanishes rapidly enough, then the Fredholm theory of integral equations applies. It follows that 
(20) has a unique solution in the form 

Dl(X Z,y) 
K(x,y) F(x + y) + fx  ® = F(x+" z ) ~ d z . "  (21) 

where D1 and D 2 are entire functions of their arguments. Then the singularities of K can only come from the 
fixed singularities of F, or the movable zeros of D> But D 2 is analytic, so these movable singularities must be 
poles. 

I would like to close by giving two examples of how the conjecture may be used. 
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Example 1 

In (1 + 1) dimensions, the nonlinear Schrodinger equation is 

iu, = u~ + a[ul2u (22) 

It can be solved by IST [15]. A natural generalization to (2 + 1) dimensions is 

iu, = X72u + alul2u. (23) 

We claim this equation cannot be solved by IST, because (23) has a similarity solution in the form 

u(x,y, t)  = R (x/~x 2 + y2 ,X)exp( ih t ) ,  

and the ODE for R (r) is not of P-type. So the nonlinear Sehr6dinger equation is solvable in (1+1) dimen- 
sions, but not in (2+ 1) or (3 + 1) dimensions. 

Example 2 

In (1 + 1) dimensions, the KdV equation [7] is 

u t + 6uu x + u~,~ = 0 (24) 

and the modified KdV equation is 

vt - 6v2vx + v~,~ = 0. (25) 

Both can be solved by IST, and MIURA's [11] transformation relates them. A generalization of KdV to (2+ 1) 
dimensions is the KADOMTSEV-PETVIASHVILI [9] equation 

(u, + 6uu x + u,~) x + aUyy = 0. (26) 

This is also of IST-type [6]. The same generalization of mKdV to (2+ 1) dimensions is 

(vt - 6V2Vx + Vxxx)x + aVyy = 0. (27) 

We claim this equation cannot be solved by IST, because (27) has a time-independent similarity solution in the 
form 

v(x,y, t)  = (2y) -1/2 V(x/(2y) l /2) ,  

and the equation for Vis not of P-type. 

To summarize, the question of determining whether a given equation is or is not solvable by IST is rather 
delicate. At the moment, this test for the Painlev6 property is the best test we know. It is direct, it requires no 
exceptional cleverness from the user, and there are no known counterexamples. 
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ABSTRACT 

In an early paper on the inverse scattering problem for the three-dimensional Schr6dinger equation using 
a Gel'fand-Levitan equation, Kay and Moses introduced nonlocal potentials which in the present paper are 
called "quasi-local." These potentials are diagonal in the radial variable, but are integral operators in the angular 
variables and represent a generalization of the usual local potential. In the early paper, we were unable to give 
explicit potentials for which the SchrSdinger equation could be solved, since we did not solve the corresponding 
Gel'fand-Levitan equation. In the present paper, we introduce another Gel'fand-Levitan equation for which 
many solutions can be found. Each solution yields a ,quasi-local potential for which the corresponding three- 
dimensional Schr6dinger equation can be solved in closed form. As far as the author knows, these are the first 
potentials, local or nonlocal, other than separable potentials, for which the Schrfdinger equation can be solved 
in closed form. They should be useful in testing hypotheses of formal scattering theory. 

In the present paper, examples of quasi-local potentials are given which support point eigenvalues and for 
which there is no scattering whatever. These potentials are analogues of the reflectionless potentials of the 
one-dimensional problem. 

Finally, we indicate how the scattering operator can be found from a wave operator satisfying any boun- 
dary or initial or final value conditions and the corresponding completeness relation. This result enables us to 
obtain the scattering operator from spectral data for the three-dimensional problem of the present paper. 

INTRODUCTION 

An early method of solving the inverse scattering problem for the three-dimensional Schr6dinger equation 
was given by the writer [1], who generalized an inverse method of JOST and KOHN [2] for the radial 
Schr6dinger equation. This method was a nonlinear one and sought to identify a minimal (but not necessarily 
unique) set of scattering data from which the potential could be reconstructed. An iterative scheme was given 
for the potential in terms of this minimal data. We shall now describe these data. 

Consider the Schr6dinger equation for the continuous spectrum corresponding to the local potential P (x): 

[--A + V(x)ltk_(xik) = k2~b_(xlk), (1) 

where k = Ikl, r = Ix[, and ~b_(xlk) is required to be the scattering eigenfunction and thus required tohave  
the asymptotic form 

e ikr 
~,_(xlk) - -  (2w) -3/2 e jkx + be(~,~')  - - ,  r ~ oo,  (2) 

r 

where lq = x / r  and -q' = k/k. 

In [1], it was indicated that if there were no bound states the potential would be determined by the 
amplitude of the spherical scattered wave. Not all of the amplitude had to be known. It would be sufficient to 
know bk(--~,~) for 71 restricted to a hemisphere and for all k. 
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Having obtained the iterative method of [1], we wished to obtain exact solutions to inverse problems. We 
were guided by our experience with the inverse problem for the one-dimensional Schr6dinger equation, for 
which we could find exact solutions. 

KAY a~,d MOSES [3] set up an abstract formalism for the inverse problem in terms of spectral theory, 
which was a generalization of the original Gel'fand-Levitan approach of [4] for the radial equation, and it was 
shown in [5] that the Gel'fand-Levitan equation for the one-dimensional equation was a special case of the 
abstract formalism (KAY's original method [6] used a clever time-dependent approach which the present 
writer felt might have limitations in other situations). FADDEEV [7] showed explicitly that both the 
Gel'fand-Levitan approach to the inverse problem [4] for the radial equation and the treatment of MAR- 
CHENKO [8] for the radial equation could be recovered from the abstract formalism of [3]. 

Generally, the abstract formalism indicated that for a large area of inverse spectral theory a Gel'fand- 
Levitan equation could be set up which would enable one to reconstruct a self-adjoint operator from its spectral 
decomposition. To be somewhat more specific, one would be given the domain of an operator by giving the 
boundary conditions on its eigenfunctions. One would also be given the spectral decomposition (i.e., the com- 
pleteness relation on the eigenfunctions). Then if one assumed certain triangularity conditions on an operator 
which gave the transformation from a known self-adjoint operator (i.e. one whose proper and improper eigen- 
functions were known explicitly) to the desired operator, one could find the transformation explicitly. The tri- 
angularity conditions had to be compatible with the boundary conditions on the eigenfunctions of the desired 
operator. The equation for the triangular portion of the transformation operator was the generalized Gel'fand- 
Levitan equation. In the one-dimensional case, the completeness relation on the eigenfunctions of the desired 
operator could be expressed in terms of the reflection coefficient. Moreover, the triangularity relation assured 
one that the scattering potential was local. 

One of the very useful applications of the Gel'fand-Levitan and Marchenko equations for the one- 
dimensional and radial-equation cases is that, for some of the completeness relationships, the appropriate 
Gel'fand-Levitan equations can be solved explicitly in closed form. The corresponding potentials can then be 
found explicitly. We thereby add to the small collection of completely solved problems for the one-dimensional 
or radial equation cases. An example of new results were the reflectionless potentials of KAY and MOSES [9] 
whose existence was not suspected until the Gel'fand-Levitan equation for the one-dimensional problem was 
set up. Indeed these solutions were particularly easy to come by. It was assumed that the spectral measure 
function for the continuous spectrum of the perturbed Hamiltonian was identical to that of the unperturbed 
Hamiltonian or kinetic energy. However, the perturbed Hamiltonian had negative point eigenvalues. The 
three-dimensional result of the present paper is a direct analogue of this situation. 

1. EARLIER THREE-DIMENSIONAL GEL'FAND-LEVITAN EQUATIONS, 
COMPLETENESS RELATIONS, AND QUASI-LOCAL POTENTIALS. 

In [10] and [11], KAY and MOSES wrote the first Gel'fand-Levitan equation for the three-dimensional 
inverse problem. The first problem which one has to contend with is to give a completeness relation compati- 
ble with the three-dimensional scattering problem and to determine how will it involve the scattering data. The 
second problem is how to determine the choice of the triangularity properties of the Gel'fand-Levitan kernel to 
obtain a multiplicative potential (i.e., diagonal in the x-representation). Our initial Gel'fand-Levitan equation 
for the three-dimensional problem assumed that the Gel'fand-Levitan kernel was triangular in the radial vari- 
able. That is, let us denote by q,(xlk) the solution of the perturbed Schr6dinger equation H~(xlk) = 
k2~b (xlk), where tk (xlk) is analogous to the Jost function of the one-dimensional or radial problem. Thus, 
writing 

t~(xlk) -= tk(r,O,q~lk), ~o(x[k) = q,o(r,O,~lk), (1.1) 

where r, 0, q~ are the polar coordinates of x (i.e., x = r (sin 0 cos ~b, sin 0 sin q~, cos 0 )), we required O (x Ik) to 
satisfy the boundary condition (in the sense of distributions in 0 and 4)) 

lim [(k (r, 0, ¢ lk) -~,0(r ,0 ,61k)]  = 0 for~r /2  <~ 0 <~ ~r. (1.2) 
r ~  

Furthermore, we assumed that H had no point eigenvalues. 

In [10] and [11], it was shown that the boundary condition (1.2) leads to a completeness relation which 
involves the amplitude bk('O,~') for ~ , ~ '  on a hemisphere. Hence, if we seek a local potential V(x), we 
require too much scattering data, since the earlier method of iteration indicated that only bk(-'O,~/) had to be 
known for v/ on a hemisphere. We assumed a triangularity condition on the Gel'fand-Levitan kernel 
K(r,O,4, Ir',O',4;) compatible with the boundary condition (1.2), namely, 
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qJ(xlk) tO0(xlk)+ f r  ~ r'2dr' £ ~ sinO'dO' L 2r = d4~' K(r,O,4~lr',O',6') t00(r',0',4dlk) (1.3) 

thus, the Gel'fand-Levitan kernel was taken to be triangular in the radial variable. 

The potential which is obtained with this triangularization is in general a nonlocal one of a particular form, 
namely, it is diagonal in the radial variable, but is an integral operator in terms of the angular variables. We 
term such potentials "quasi-local." To be explicit, a potential Vis said to be quasi-local if a kernel of an integral 
operator V(r ;0, ~b 10', 4~') can be assigned to it, such that if q~ (x) - -  qJ (r, 0, 4)) is an element of the Hilbert space 
then 

Vcb (x) = sin 0' dO' dd/V(r;O,4]O',d/)qJ(r,O',rb'). (1.4) 

The requirement that V be self-adjoint leads to 

V(r;O,cblo',~') = V* (r;0',4~'10,4~) , (1.5) 

where the asterisk means complex conjugate. Having solved for the Gel'fand-Levitan kernel, the kernel of the 
quasi-local potential is given by 

0 [r2K(r,O,dalr, O,,(o,)]. (1.6) V(r;0,4~lo',6') = - 2 ~r  

From the point of view of [10], [11], and the present paper, local potentials are particular cases of quasi- 
local potentials, for in the case of local potentials the kernel for the potential contains the factor 
8(0 - 0 ' ) 8 ( ~ b -  ~b'). If a local potential gave rise to the scattering amplitude b~(~,'O'), the Gel'fand-Levitan 
equation would reproduce this local potential. If one knew in advance that the potential was a local one, how- 
ever, most of the data bk(aq,'O') would be redundant, since from [1] only bk(-~,vl) need be known on a hemi- 
sphere. This result implies a relation between bx('O,~') and bk(--'~,'q) or, more generally, a constraint on 
bk(Vl,'O') which would assure us that the scattering came from a local potential. (A constraint was suggested in 
[10] and [11], based on the assumption that the iteration procedure of [1] and the iteration of the Gel'fand- 
Levitan equation of [10] and [11] gave the same result for the potential to first order. It remains to be proved 
that this constraint is valid.) 

Though the data given by bk('O,~') for "q,-q' on a hemisphere is redundant for a local potential, it 
represents a set of minimal data for potentials which are quasi-local. We may, therefore, change our point of 
view and regard the Gel'fand-Levitan equation of [10] and [11] as giving quasi-local potentials from minimal 
scattering data. Therefore, we have the important result that, for every set of data bk('q,v f )  such that ~ , r l '  lie 
on a hemisphere, a unique quasi-local potential can be found which reproduces the scattering data. In excep- 
tional cases, the quasi-local potential will be a local one. 

Recently, we have been able to add point eigenvalues to the algorithm of [10] and [11]. It has been our 
intention to try to obtain exact quasi-local solutions to the Gel'fand-Levitan equations. One of the possible 
ways would appear to use the analogous methods of [9] and assume that bk(vl,v f )  =-- 0 for ~,-~' on a hemi- 
sphere. Only the point eigenvalues would then contribute to the kernel of the Gel'fand-Levitan equation. We 
have been unable to solve such Gel'fand-Levitan equations. It appears that a reflection coefficient bk(~,'q') 
must always exist when there are point eigenvalues and that its singularities in the complex k-plane correspond 
to the point eigenvalues. In this approach to the three-dimensional problem, we mirror the treatment of the 
one-dimensional case of [5], but thus far have not found analogues to the reflectionless potential of [9]. It 
should be mentioned that in a recent series of papers, of which [12] is the first, we are pressing the analogy of 
the three-dimensional problem to the one-dimensional problem and finding analogues to Jost functions, 
Green's functions, and so on. 

Before we consider a Gel'fand-Levitan equation with bound states, we should mention the work of FAD- 
DEEV [13] and NEWTON [14]. Instead of using Gel'fand-Levitan kernels which are triangular in the radial 
variable, they require their kernels to be triangular with respect to an axis, say, the z-axis. Their potentials are 
diagonal with respect to the z-axis but are integral operators with respect to the x- and,y-axes. Thus, their 
potentials are quasi-local in a somewhat similar sense to ours. The completeness relations for the eigenfunc- 
tions are more complicated than ours. The way that the completeness relations can be obtained from the 
scattering amplitudes is discussed in [13] and [14]. Furthermore, much of the emphasis in the last two refer- 
ences is on the placement of conditions on the scattering amplitudes which assure one that the potential is local 
and independent of the axis of triangularization. As in [10] and [11] point eigenvalues are not included and no 
exact solutions are given. 
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2. AN ALTERNATIVE GEL'FAND-LEVITAN EQUATION FOR QUASI-LOCAL 
POTENTIALS IN TERMS OF THE SPECTRUM OF THE PERTURBED OPERATOR 

Whereas our previous algorithm for the three-dimensional problem was patterned after the one- 
dimensional problem as treated in [5], the treatment which has enabled us to obtain exact solutions of the 
three-dimensional Schr6dinger equation for some quasi-local potentials represents a generalization of the origi- 
nal Gel'fand-Levitan method [4]. the algorithm which will now be given is obtained directly from the abstract 
treatment of the Gel'fand-Levitan equation [3]. 

Let us denote the eigenfunctions of H0 = - A  by 

~P0(xlk) = ( 2 ' n ' ) - 3 / 2 e J k ' x  • (2.1) 

In (2.1) the eigenfunctions of H0 are expressed in terms of the momentum k. It is also convenient to express 
the eigenfunctions of H0 in terms of the eigenvalues of H0 and the polar angles of k where k = k (sin 0 cos d~, 
sin0 sin ~b, cos 0), with 0~<0~<Tr, 0~<~b~<21r. We write 

~00(x[E,0,~b) = EV4[(sinO)/2]V2tko(xlk), E ~ k 2 . (2.2) 

Our purpose to find a quasi-local potential V from spectral data on H (i.e., the completeness relation for the 
eigenfunctions) and the boundary conditions on the eigenfunctions. The spectral data from the continuous 
spectrum consists in giving the function <O,4~[oJ(E)lO',dd> which satisfies the hermiticity and positive- 
definiteness conditions 

<0,4~ Io, (E)I0',¢~'> = <0',¢~'1,o (E)I0,4~> *, (2.3) 

£ ~  dE £ ~  dO L2'~ dqb £,r  dO, fo2~ dq~,f,(E,O,d~)<O,cbloJ(E)lO,,dj,> f(E,O,,~,)>>, O . (2.4) 

where equality holds if and only i f f  = 0, f (E,O,~)  being a complex function in the Hilbert space with norm 

The spectral data for the discrete spectrum of H is specified by giving the eigenvalues E i (i = 1, 2 . . . . .  n) 
and eigenfunctions of H0, namely, any nonzero solutions of the differential equations 

- a  ~0i (x) = E:~oi (x) . (2.6) 

Moreover, we must specify for each E,. a positive constant C~. The point eigenvalues may be any real number 
(positive, negative, or zero). It is permitted that several E, be equal (the case of degeneracy), but it is con- 
venient to require that all the solutions of (2.6) be linearly independent. 

The basic theorem which is proved by the methods of [3] is the following (we use h and o- instead of 0 
and ~b respectively for the polar angles of x to prevent confusion with the polar angles of k): 

Define 
t ,  oo ~,-z" r 2  t"  "tr r 2 r ;  

f~(xlx') ~ a ( r , X , c r l r ; h ' , ~ r ' ) = J o  dE.Jo dOJoZrdO'Jo J0 d4~'~o(XlE, O,4~) (2.7) 

x <0,61oJ(E)lO',6'> ~ ( x ' I E ,  0 ' ,6 ')  

~ 0 A x ) ~ ( x ' )  8 (x-x ' )  . 
+ ~" Ci i 

We then have the Gel'fand-Levitan equation for 

K(r,X,o'lr',X',o") = - ~(r,X,o'lr',h',cr') 
~ ~ r 

r"2dr '' f ~  sin h" dX" fo 2~ do'"g(r,X,o'lr",X",cr")l~ (r",X",o-"lr',X',cr') . (2.8) 
• 1 0  d O  

Then, the functions tk (x I E, 0,4~) defined by 

~(xlE,0,4,) = ~(r,X,crlE, O,4~) = ~o(r,X,~rlE, O,6) 
f r r , 2 d r , ~ s i  n , , r2~ + X dh Jo do"K(r,X,o-lr'X',cr')X t~o(r',X',o"lE, O,~b) , (2.9) 

with 

tko(r,h,o'lE, O,,~) -~ qJo(xlE,0,4,) , (2.9a) 

are eigenfunctions of the operator H = H0 + V, i.e., 
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HO(x]E,O,4)) = EO(xlE, O,(o) , (2.10) 

where V i s a  quasi-local potential whose kernel is given by 

0 V(r;~,o'[h',o-') = 2 ~r [r2K(r'h'°'lr"h"°")] " (2.11) 

Moreover, the functions qJ i (x) defined by 

01(x) = ~o/(X) + Lrr'~dr ' L '~ s inh '  dh' fo 2~ do"K(r,~,cr[r',h',o-') tOo,(r',h',o-') (2.12) 

with 

Ooi(r,h,(r) = Ooi(x) , (2.12a) 

are proper eigenfunctions of H, i.e., 

HqJf(x) = Ei%(x) , (2.13) 

and are normalizable, with the norm being given by 

fitOi(x)l 2 dx = C, . (2.14) 

The eigenfunctions of H satisfy the completeness relation 

L fog yo fo ° fo 2° 
*Ax)0 ?(X') 

+ ]P, 8 (x-x ' )  . (2.15) 
, Cf 

Because of the triangularity properties of the Gel'fand-Levitan kernel, the eigenfunctions of H satisfy the boun- 
dary conditions 

tO(OlE, O,4~) = Oo(OIE, O,4~), %(0) = q, oAO), 

VqJ(01E,0,40 = V¢o(0IE,0 ,6) ,  Vtk~(0) = V~k0~ (0) . (2.16) 

As mentioned earlier, the proof of the  theorem comes directly from an application of [3]. 

3. EXACT SOLUTIONS OF THE GEL'FAND-LEVITAN EQUATION AND THE 
SCHRODINGER EQUATION 

We shall now give three explicit examples of solutions of the Gel'fand-Levitan equations and the 
corresponding solutions of the Schr6dinger equation. Each of the cases correspond to the particularly simple 
situation in which 

< 0,4) I~o (E) 10', 4)'> = 8 (0-0')  8 (4)-~') (3.1) 

and there is one nonnegative point eigenvalue. Though these are particularly simple cases, they are sufficient 
to show that the procedure is not an empty one. In each of the cases presented here, we have verified that the 
eigenfunctions really do satisfy the SchrSdinger equation with the appropriate potentials and also the complete- 
ness relation (2.15), which in the present case becomes 

qq (x ) ,  ~'(x') 8 (x -x ' )  (3.2) fo ~ dE Yo dO L 2~ d$ q,(xlE, O,4~)¢*(x'lE, O,4~) + C1 

The potentials are not trivial and the verification, though straightforward, is somewhat arduous, In all three 
cases, there is no scattering! That is, the boundary condition (1.2), which can also be required for quasi-local 
potentials, is satisfied by the continuous spectrum eigenfunctions, but with the amplitude of the spherical wave 
identically zero. It should be mentioned that SAENZ and ZACHARY [15] have shown the possibility of nonlo- 
cal potentials which do not scatter. 

Simple as the present examples are, the potentials given here appear to be the first (aside from separable 
potentials of the form V(xlx') = ~ f.(x)fTi(x') where V(xlx') is the kernel of the nonlocal operator [16]) for 

i 

which the three-dimensional Schr6dinger equation can be solved in terms of elementary functions and in closed 
form. 
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Case 1 

The simplest eigenfunction tk0j (x) that we can think of is 

$01(x) = 1 , (3.3) 

Clearly, from -A~b01 (x) ~ El~b01 (x), 

Ei = 0 .  (3.3a) 

The kernel fl (x Ix') of the Gel'fand-Levitan equation is very simple indeed: 

1 (3.4) n (x lx ' )  = c--(' 

1 1 Yorr"2dr"Yo ~ sin ?t" d h " ~  2~ d o - " K ( r , X , ~ l r " , h " , o - " ) .  (3.5) K(r,X,o-lr ' ,h ' ,~r ')  C 1 C I ~ o  

From (3.5), it is clear that the Gel'fand-Levitan kernel K(r ,X,cr lr ' ,h ' ,o")  is independent of r' ,h' ,  o-' and, 
hence, we may write 

K(r,X,o-[r ' ,h ' ,o- ' )  =- F ( r , h , ~ )  . (3.6) 

On substituting (3.6) into (3.5), we obtain an equation for F(r,  h, o-): 

1 4rr raF(r ,h ,o . ) .  
F ( r , k , t r )  = C1 3C1 

On writing 

r 0 = (3C1/4rr)l/3 , 

we have the following result for the present case: 

K(r ,h ,o ' l r ' ,X ' ,~r ' )  = 3 1 
4"n" (r 3+r03) ' 

3 r(r3-2r03) 
V(r;X,~lX',o") = 21r (ra+r3) z ' 

tk (x [E, O, 6 )  = E 1/4 [(sin 0)/2] v2 0 (x /k ) ,  

with 

~0(xlk) = ~b0(xlk) - (27r) -3/2 3' r 2 
k (r3+r 3)  J l ( k r ) '  

r~ 
~bl(x ) = (ra+ro3) • 

In (B.11a) , r = Ixl, as usual, and k = E 1/2. 

(3.7) 

(3.8) 

(3.9) 

(3.1o) 

(3.11) 

(3.11a) 

(3.12) 

In (4.11) and subsequently, j n ( x )  is the spherical Bessel 
function of order n. Also, k is the vector given by the polar coordinates k, O, oh. 

Case 2 

In this case, we take 

%1(x) = z = r cosX, 

from which 

E1 = 0 ,  

as before. 

On defining 

r o = (15CJ4rr)V 5 , 

we have 

15 (r c o s h ) ( r ' c o s h ' )  

(3.13) 

(3.14) 

(3.15) 

K(r,?~,o' lr ' ,X' ,o") = (3.16) 
4"rr (rS+r5o ) 
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V(r;h,crlk',~r') 15 r3(rS-4r~) cosh  c o s h ' ,  (3.17) 
27r (rS+r05 )2 

to(xlk) = to0(x[k) - (2~') -3/2 15 r 4 cos ~. j2(kr) (3.18) 
k (rS+r~) 

rr~ 
tol(x) (rS+r05~ cos h . (3.19) 

Cases 1 and 2 are special cases in which the "eigenfunctions" to0i(x) of H0 are expressed as a sum of 
spherical harmonics: 

too/(X) ffi ' ~  Ci.lm~'lm(X,o')fl(Kir), (3.20) 
t,m 

where ci tm are constants and the functions fl(kir) are given by 

[Jl(Kir), f o r E i =  K/2> 0 ,  

j~(Kir) ~ [ r I , ' for  Ei = O, (3.21) 

[ Jl(iKir), for Ei = - '  i¢~ < 0 .  

(The subscript i should not be confused with i = ( -1)  1/2 which appears in the argument of Jl in the last of 
(3.21).) 

In Case 1, the subscript i takes on the value 1, E1 = 0, and the only non-vanishing cu,, is Ct, oo. The 
results of Case 1 could have been obtained using separation of variables and looking for a phaseless potential 
for the l ~ 0 radial equation as in [17]. The potentials for all of the other radial equations would be taken 
equal to zero. On reconstructing the solution in the three-dimensional space, the present nonlocal potential 
would result. A similar procedure could be used for Case 2, in which cl, 10 is the only nonvanishing coefficient. 
A potential would be obtained only for the l = 1 radial equation. However, if there is more than one term in 
the sum in (3.20), the method of separation of variables becomes very awkward. Even in the "simple" Cases 1 
and 2, the three-dimensional approach of the present paper is far less difficult than the use of separation of 
variables. 

It should be emphasized that the form (3.20) is not always a convenient form for representing to0i(x) as 
Case 3, which follows, shows. 

Case 3 

In this case we take 

t001(x) = e ip'x, (3.22) 

where p is a fixed vector. 

Clearly, 

E1 = p2 >/ 0, p ~ [p[. (3.23) 

Case 1 is reproduced when p = 0. 

Let us define the unit vectors k, k'  as being those determined by the angles h, ~r and h', ~r' respectively in 
terms of polar coordinates. Then, on defining ro as in (3.8), 

K(r.h,o-[r',h',~r') 3 1 e ~p'(x-x') , (3.24) 
4rr (r3+r 3 ) 

where the vectors x and x' are given by the polar coordinates (r, h, o-) and (r', k', o-') respectively, 

3 eirp.(x_x, ) [r(r2-2r~) r2p'(k-k ') ] 
W(r:X,crlX',~r') = ~ -  [ (r3+r~)2 i r3+r3o , (3.25) 

to(xlk) = too(xlk) - (2~r) -3/2 3r2eiPX (r3+rd)lk-pl J l ( i k - p l r ) ,  (3.26) 

eip-x 
tol(x) ~ ro 3 (rT~-ro3) . (3.27) 
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4. FINAL COMMENTS: COMPARISION POTENTIALS, VARIATIONAL 
PRINCIPLES, AND THE SCATTERING OPERATOR 

The present section consists of additional comments relating to the Gel'fand-Levitan equation of the 
present paper. First of all, the Gel'fand-Levitan equation can be set up to use comparison potentials and com- 
parison measures as discussed in [18]. The variational principle for finding the potential discussed in [19] also 
applies. The variational principle can also be combintd with the use of a comparison potential to obtain the 
total potential. For the sake of brevity, we refrain from going into the details. 

In the three examples of the preceding section, the scattering operator was found to be the identity 
because the amplitude of the outgoing spherical wave was zero. Generally, however, the scattering operator 
differs from the identity. The wave function which is found through the use of the Gel'fand-Levitan equation 
is usually not the outgoing wave. Hence we must give a method whereby the scattering operator can be calcu- 
lated from a wave function that is not the outgoing wave and for which we know the completeness relation. 
The result which we. shall give is very general and is a result of abstract scattering theory as discussed in [3]. 
For the sake of brevity, we shall assume that the reader is familiar with [3] and use the results and notation of 
that reference. (For simplicity, we take ~ = 1.) 

Knowing a complete set of eigenfunctions for the continuous spectrum and knowing their completeness 
relationship is equivalent to knowing the projection of the wave operator in the continuous spectrum, denoted 
by U~ (H0) , and the weight operator W and, in particular, its continuous part W~. The relation for the scatter- 
ing operator S in terms of the weight and wave operators is 

S = M+ WcM*-, (4.1) 

where the asterisk means adjoint. The operator Wc is given in terms of the H0-representation by 
<0,~b Ito (E)10',~b'> used in the completeness relation. The operators M_+ ( which are generalizations of the 
Jost functions) are obtained from the known wave operators U through 

M+_ ~ U'O (1to) - f y+_ (E;H0) VU'o (Ho)8 (E-Ho)dE . (4.2) 

We should like to emphasize the generality of (4.1) and (4.2). They could be used, for example, to find the 
scattering operator in multichannel scattering if it is more convenient to solve the Sehr6dinger equation in 
terms of wave functions that satisfy boundary conditions other than those which lead to the outgoing wave 
functions. 

In the case of the inverse problem of the present paper, U = I + K where K is the integral operator 
whose kernel is the solution of the Gel'fand-Levitan equation (3.8). 
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THE JOST-KOHN ALGORITHM FOR INVERSE SCATTERING 

Reese T. Prosser 

Department of Mathematics 
Dartmouth College 

Hanover, New Hampshire 03755 

INTRODUCTION 

In 1952 JOST and KOHN [1] introduced a straightforward procedure for solving the inverse problem for 
radial (i.e., one-dimensional) potential scattering [1]. In 1956 MOSES extended this procedure to include non- 
radial (three dimensional) problems [2], and in 1975 I was able to show that his extension actually converges if 
the scattering data are sufficiently restricted [3]. Here, I want to describe briefly the algorithm, and comment 
briefly on its usefulness in theory and practice. 

1. DESCRIPTION 

The scattering of a quantum mechanical wave function ~b (x, k) from a fixed potential V(x) is governed by 
the time-independent SchrSdinger equation 

(A+k2)q5 (x, k) = V(x)~b (x, k) . (1) 

The solution, which is to consist of an ingoing plane wave plus an outgoing scattered wave, may be expressed 
as 

&(x,k)  ffi e ik'x + f eilkLlx-yl V(y)4~(y,k)dy (2) 
4~lx-yl 

As ]xl "-'* 0% the behavior of ~b(x,k) is given by 

$ ( x , k )  ~ e ik'x + ~ r ( k ' , k )  + - ~ -  . (3) 

Here k ' =  ( Ikl / Ix l )x  and T(k ' ,k ) ,  which contains the scattering data, is given by 

T(k ' ,k)  ffi J e -ik''y V(y)dp(y,k)dy. (4) 

An iterative solution for T(k', k) is obtained by first solving (2) for ~b (x, k) and then substituting the result in 
(4): 

eilklly-y'l 
T(k ' ,k )  = f e -ik''r V(y)e ik'y dy + f f e-ik"YV(y) 4"rf , V(y')e ik'y' dy'dy + (5) 

ly-yl . . . .  

In the momentum representation, this solution becomes 

T(k', k) = V ( k ' - k )  + f V ( k ' -  k") (k"2-k2+i0)  - 1 V ( k " - k ) d k " +  . . . .  

or, more formally, 

T =  V +  V ( F V ) +  v r ( V ( F V ) ) +  . . . .  ( 1 -  v r ) - l v ,  

where F V is the kernel 

(F V) (k', k) = (ka -k2+ i0 )  - I  V(k' - k ) .  

(6) 

(7) 

(8) 

It is known that this iterative solution (6) for T(k', k) actually converges, provided that the potential is 
sufficiently weak. Specifically, one can define a class of kernels K (k', k) which includes potentials of the form 
V ( k ' - k )  and a norm II II for this class such that 

[ [ K ( r M ) I [  ~< I lg i [  IIMII < 0o (9) 
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Then, if V(k ' -k )  is in this class and if 

IIvll  = a < 1,  

then T(k', k) is also in this class with norm 

IITII ~< a 
1 - a '  

and the series (6) converges to Tin norm [4,3]. 

For a solution of the inverse problem, we have only to invert the series (6). 
we already know T(k', k) for all values of (k', k),  since then 

V =  T -  T ( F T ) +  T ( F T ) ( F T ) -  . . .  = T(1 + FT) - l ,  

and the series (12) converges to Vprovided that 

I l r l l  < 1. 

(10) 

(11) 

This presents no problem if 

(12) 

(13) 

In practice, however, we know T(k', k) only for certain values ("on-shell" values) of T(k', k), e.g., only 
for k ' =  - k  (backscatter data), or only for oJ = k/Ikl = fixed, Ik'[ = Ikl ( fixed-aspect data). On the other 
hand, if the potential is local, then we should not need a six-parameter family of data T(k', k) to determine the 
three-parameter potential V(k). 

To see how to proceed, suppose first that we know the backscatter data T ( -k ,  k) for all values of k. 
Then, following Jost and Kohn, we replace T(k' ,k) by T,(k' ,k) = ~  T(k' ,k)  and F ( k ' - k )  by 

V, (k ' -k )  = ~ ~m Vm (k ' -k ) ,  and substitute into (6). Then we equate the coefficients of era. The result is: 
m=l 

m = 1: T ( - k , k ) =  F l ( -2k) ,  

m = 2 :  0 = F2(-2k) + f F i ( -k -k" ) (k"2-k2+i0)  -1 V l ( k " - k ) d k " ,  (14) 

etc. 

Hence, if we put 

T~(k',k) = T(k' ,k),  

V~ ( -2k)  = /'1 ( -k ,  k), 

T2(k'k) = f Vl(k ' -k") ,  (k"2-k2+i0) -1 Vl(k"-k)dk" ,  (15) 

V2(-2k ) = T2(-k ,k) ,  

etc. 

then, 

V~(-2k) = ]~ E m Vm(-2k) .  (16) 
m = l  

(15) and (16) give the potential V, ( -2k)  in terms of the backscatter data T, ( -k ,  k), and together comprise the 
Jost-Kohn algorithm. It is shown in [3] that the series (16) actually converges in norm for all ¢ for which 

~l lvl l l  < 3 -  2 4 2 =  0.172... (17) 

and that the sum V, is a potential which will yield the given backscatter data T, ( -k ,  k). 

2. COMMENTS 

(1) This algorithm shows clearly that the inverse scattering problem is solvable in a neighborhood of the 
origin in the space of backscatter data, and that the solution depends analytically on the data. 

(2) The algorithm is simply described and easily adapted for numerical computation. For this purpose, it 
is useful to note that the data enter only at the first step--in the computation of V 1. The remaining steps are 
all independent of the data. 
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(3) The algorithm seems remarkably stable and insensitive to the details of the problem. Versions can be 
developed for any dimension, for fixed aspect or other scattering data, and for energy-dependent potentials, as 
in the case of scattering from a variable index of refraction (see [3]). 

(4) The algorithm requires only a three-parameter family of data in three dimensions, in contrast to the 
various versions of the Gel'fand-Levitan algorithm available in three dimensions, which all require a full five- 
parameter family of data [5]. 

(5) If only approximate data are known, then the algorithm will give an approximate potential. This 
potential will be in error in norm by an amount determined by the error in norm of the data. Specifically, if the 
difference between the true and approximate backscatter data differ by 8 in norm, so that II v l -v ' l l l  < 8, 
then, if the defining series converge, the resulting true and approximate potentials will differ by at most 28 in 
norm, so that I I V , -  v',ll  < 28. 

(6) If only partial data are known, then VI can still be determined from the partial data together with rea- 
sonable assumptions about the ,model and standard interpretation and extrapolation techniques. Then 1I, can be 
determined from Vl as before. Thus, partial data will still give an approximate solution. 

(7) Moses has shownthat  in one dimension the first two terms V 1 and V 2 of this algorithm coincide with 
the first two terms of the potential obtained from an iterative solution of the Marchenko equation. He conjec- 
tures that these two algorithms agree term by term. I know of no evidence to the contrary. 

(8) The primary weakness of this algorithm lies in its restriction to weak potentials and weak scattering 
data. It requires that the Born series (6) converge, and this rules out many interesting applications. There 
seems to be no way, for example, to accommodate bound states, or discontinuous indices of refraction, in the 
manner of the Gel'fand-Levitan algorithm. It is therefore of interest to try to relax these restrictions to weak 
potentials. 

(9) For instance, it may be possible to improve the situation by replacing the Born series by a suitable 
version of the Fredholm theory, giving T(k ' ,k)  as a ratio of two series converging for all potentials, or 
equivalently, by replacing the Born series by a suitable assortment of Pad~ approximants. Bound states then 
appear as zeros in the denominator of the ratio for T(k', k). 

(10) It may also be possible to construct a reference potential V' in such a way that the difference A T 
between the measured backscatter data T ( - k ,  k) and the reference data T ' ( -k ,  k) is small. The algorithm 
could then be used to construct the difference A V between the true potential V and the reference potential V'. 
Bound states could then be included in the reference potential. 

(11) Finally, it may be possible to sum the series (16)~ giving Vin terms of V1 via an integral equation 
of Gel'fand-Levitan type. These possibilities are under current consideration. 
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ABSTRACT 

The inverse problem for the reduced wave equation Au + k2n2(x)u = 0, where n is real and continuous 
and n 2 - 1 has compact support in IR 3, is examined for the case where the scattering data consists of a set of 
measurements of the near or far field produced by a prescribed incident wave. The inverse problem is formu- 
lated in terms of a system of functional equations, a quadratic nonlinear integral equation, plus an additional 
inequality or constraint. The general nonlinear theory of the complete system is examined. 

INTRODUCTION 

We will examine the inverse scattering problem for the scalar wave equation 

Au + k2n2(x)u = 0 

where the index of refraction n (x) is identically equal to one outside some compact region. The scattering 
object is characterized by the compact domain where n (x) ;~ 1. Here, n(x)  will be assumed to be real and 
continuous, with the support of n2(x) - 1 being contained in some sphere D of radius R with center at the ori- 
gin. 

The emphasis in this paper is on the limited but important problem where a finite set of scattering meas- 
urements are made on either the scattered field u s or the total field u = u i + u s, for a fixed frequency or wave 
number k, and fixed incident field u ~. Once this problem is well understood, one can then treat the problem 
where sets of measurements are made for a finite set of frequencies or incident fields. 

As a preliminary, a few remarks on the direct scattering problem will be made. In LE1S [1], it is shown 
that given the above assumption on n (x), and if the incident wave is continuous in the region D (all sources 
are external to the scatterer), then the direct scattering problem has a unique solution. The results hold 
independently of frequency. The direct scattering problem can then be transformed to the integral equation 

k 2 eiklx-yl 
u(x)  = ui(x) + ~ f l )  ~ v(y)u(y)dy,  (1) 

where 

v(x) = n2(x) - 1. 

(The condition on continuity of n (x) or v(x) can be relaxed somewhat. However, the existence and unique- 
ness of the solution will depend upon the size of the spectral radius of the integral operator in the above equa- 
tion and th'is in turn will depend upon k.) 

When Ixl ~ oo, the far field behaviour in the direction x/Ix]  is given by 

eiklxl 
uS(x) ~ ~x~  g(kS)" 

where k s= (k / I x  I)x and the complex scattering amplitude g (k  s) has the form 
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k 2 
g(kS) = ~ fo  e-ik*'Yv(y)u(y)dy 

1. FORMULATION OF THE INVERSE PROBLEM 

We want to determine v(x) from a set of measured values of u (x) or uS(x) at points outside the scatterer 
(the domain D). 

Measurements of u s made in the near-field of the scatterer at the N points {xt} yield the relations 

k 2 r eiklxt -yl 
JD ~ v(y)u(y)dy = b,, 1 ffi 1,2 . . . . .  N, 

4--~- 

where the complex numbers b t a r e  known or measured quantities. 

For measurements in the far field at a set of N scattered directions represented by the spherical polar vari- 
ables (0{, qS{), or by the vector k s in the same direction with length k, the measured quantities are the complex 
scattering amplitudes. In this case we have the relations 

k 2 
4"~- fo  e-iklYv(y)u(y)dy = bj, l = 1,2 . . . . .  N. 

In either case the results of the measurements yield a set of N functional equations of the form 

fo  h,(y)v(y)u(y)dy = b t, l = 1,2 . . . . .  N, (2) 

where ht are known functions and v(y)u (y) is unknown [2]. 

We are of course assuming that we can measure phase and amplitude, and for present purposes are 
neglecting the effect of errors in the data. The more complicated problem where only the amplitude is meas- 
ured leads directly to a nonlinear equation involving the data. 

We will work in terms of the unknown quantity in (2); hence, we will set 

v(x) u (x) = w (x). (3) 

Then (1) can be represented in the form 
/ 

w(x) = v(x)W(x)  + Kwl,  

where K is the integral operator with kernel 

k 2 eiklx-yl 

47r I x - y l  

or  

We see that v(x) can be recovered from knowledge of w(x) as follows: 

v = w / [ #  + Kw],  

~ [ u t +  Kw] 
v lu i+  Kwl2 . 

(4) 

But we required that v(x) be real, continuous on D, and vanish on the boundary of D, OD. Thus, we 
have the condition 

Im ~ [ u J +  Kw] = 0. (5) 

The inverse problem consists of finding the complex function w with real and imaginary parts which are 

real and continuous on D, vanish on OD, and are such that they satisfy the nonlinear integral equation (5) and 
the functional equations (2). In addition, we shall impose a mild constraint that for s o m e  ~1 > 0, 

lu i+  ~ w l  > ~llwl. (6) 

This last constraint insures that when v(x) is determined from (4) it will be bounded. 



273 

Thus,  "the inverse problem reduces to solving the system (2), (5) and (6). 

R e m a r k .  When an infinite set of measurements  are made over some cone of scattering directions in the far- 
field, or at all points in a rectangle in the near field (as in Holography), then the set of N equations (2) can be 
replaced by a Fredholm equation of the first kind. In turn, the above set of N equations (2) can be thought of 
as resulting from the decomposition of Fredholm equation of the first kind with a degenerate kernel into the 
corresponding algebraic system. 

2. PLANE WAVE INCIDENCE AND FAR FIELD MEASUREMENTS 

To simplify the further analysis, we shall consider now the case where the incident field is a plane wave 
propagating in the direction (0 r, ~b') as indicated by the vector k ~ of length k. The formulation of the inverse 
problem is simplified by decomposing w~ i into real and imaginary parts ~b (x) and  qJ (x) respectively by setting 

~ i ( x ) w ( x )  = 4J(x) + irk(x). (7) 

(Note that when the incident field is not a plane wave we can use the same procedure provided that ]l /uq is 
bounded for all x E D.) 

Introduce the integral operator 17 as follows: 

= k 2 . _ g e x p [ i k l x - y l -  ik ~ (x y)] 
Hu u(y)dy (8) JD l x - -y l  

and decompose its kernel into real and imaginary parts, each yielding the corresponding integral H R and I / t ,  

s u c h  t h a t  

H = H R + i n  I .  

Equation (5) reduces to the following equation involving real quantities only 

¢ ffi $(II# - HR~b) + $(!IR¢ + H:~) (9) 

The functional equations (2) now have the explicit form 

k 2 
4,~ fD cos ~,(y)~ , (y)dy  = k2 - -  - ~  f o  sin at(y)~b(y)dy + bt l, 

k 2 k 2 
4--~- fD sin a t ( y ) 6 ( y ) d y  = --4-~ f D  cos a l ( y ) ~ ( y ) d y  + b, 2, 

(10) 

where at(Y) = (k ~ - kt s) "y and b t ffi bt 1 + ibl 2 . 

Inequality (6) reduces to either 

I1 + rlR4~ - rlz, l > 8114~1 

or 

(I "4- l'IR6 -- H/~b) 2 + (HR~ + 1]16) 2 > 81(62 "4- ~2). 

(11) 

( l la )  

The inverse problem now reduces to finding real continuous functions ~b, ~0 that vanish on D and satisfy the 
relations (9), (10), and (11). Once these are known, v(x)  is determined from 

v(x)  = ~b(x)/[1 + IIRq~ - H # I ,  (12) 

which is the reduced form of (4). 

3. ANALYSIS OF THE SYSTEM OF EQUATIONS 

The system of linear functional equations (10) will be inverted first. We shall assume that the functions 
cos a t (x ) ,  sin a I(x), 1 ffi 1,2, . . .  ,N are linearly independeht and hence span a 2N dimensional space X. Pick 
out a suitable choice of basis vectors ¢Pm, m = 1,2, . . . , 2 N ,  which must  be continuous and vanish on the 
boundary 8D and are such that det{ai:} ;e 0, where the matrix elements aq are given by 
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k 2 / .  
ffi ~ JO COS ot~(X)dPj(x)dx, i = 1,2 . . . .  N, ajj  

k 2 I "  
= 4---~- J n  sin ai_N(X)ePj(x)dx, i = N + 1 . . . . .  2N. 

Then expand 
2N 

~ =  ~ c ~ a ' ~ + ¢  ~, 
m=l  

(13) 

where $1 is a continuous function which vanishes on D and is perpendicular to the space X, treated as a sub- 
space of the real Hilbert space with inner product 

(u,v) = fo  u(x)v(x) x. 

Then the linear functional equations becomes an algebraic system. Solve for c, and substitute back into expres- 
sion (13) to obtain the form 

6(x)  = ~b0(x) + K0~ + ~b 1, (14) 

where So(X) is the linear combination of ¢Pm whose coefficients depend upon the measured quantities b~ and 
bm 2. Ko is an integral operator with degenerate kernel of the form 

2N 
ko(x,y) = ~ 13u~i(x)"F j ( y ) ,  (15) 

i,j=l 

where the coefficients depend upon a o only. 

As N --* oo or as the scattered directions become close together the matrix becomes ill-conditioned and 
one has to use alternative techniques to solve the system (HILGERS [3], NASHED [4]). One either uses the 
generalized inverse or, what amounts to the same thing, if (10) are expressed in the general form 

(hl,ga) = (h2m,~) + B m, m ffi 1,2 . . . . .  2N, 

then one minimizes the following 

rain ~ [(h~,40 - (hA,O) - B,~I 2 + a(4,,4~) 
/m-1 

for some a > 0. 

Because of the undetermined nature of '4~ ±, we have nonuniqueness. To obtain uniqueness, additional 
conditions have to be imposed. Two such conditions are given as follows: 

(1) Find a solution 4~ that minimizes (4~,40. This yields 4~ l = 0, if the proper basis is chosen. 

(2) If we have an a priori estimate for n, namely n*(x) ,  then we can compute the corresponding value of 
4~ *(x)  and seek the solution 4~ that minimizes (4 - 4~ *, 4~ - ~ *). This yields the value ( or a proper basis) 

IN  

m--1 

{a~m}m= 1. If the basis ~m is a real orthonormal set, then where 1P is the projection operator on the space span 2N 
c*m = ( 4  * ¢ ~ ) .  

One may want to work with a nonorthonormal basis, especially if the finite-element method is employed 
[51. 

We now substitute expression (14), where tb I is now prescribed, into (9) and obtain a nonlinear integral 
equation of the Lyapunov-Schmidt [6] type which has the general form 

= S(~).  (16) 

Since the equation is in particular, a quadratic equation, we can make use of the result of RALL [71 which 
states that it will have a unique solution in a convex set for which the integral operator (1 - S'(~)) is non- 
singular, where S'(~) is the Fr6chet derivative of S(~). Here we are interested in solutions ~ E C0(D), the 
space of continuous functions on D, vanishing on OD. 
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The usual iteration techniques that may be used to solve (16) are 

(i) method of successive substitutions, 

~ / n + l  ffi S(lltn); 
(ii) Newton's  method,  

~.+: = q , .  - ( I  - S ' ( ~ . ) ) - 1 ( ~ 0 ~  - s ( ~ . ) ) ;  

(iii) modified Newton's  method 

, / , ° + :  = ~ .  - ( I  - s ' ( g , o ) ) - : ( ~ , .  - S(~.)). 

In each case, an appropriate initial approximation ~k0 is required. 

Estimates for uniform convergence of the iteration processes are obtained using a majorizing method [8]. 
A rough estimate of  conditions needed for convergence of the successive approximation scheme starting from 
the initial value ~0 = 0 is given by [9] 

114,:11l[1 + Ilgoll] < 0.22, 

where the norms are the uniform norms,  4,1 = 4,0 + 4,±, and I = MaxillrlRII, IIII111]. Using, further, the 
rough estimate l < (1/2) k:R 2, where R is the radius of the region D, we see that, as expected, the successive 
approximation method starting from q~0 = 0 is a low-frequency approximation. It depends upon ILK01 I, which 
in turn depends upon the size of  det{ao}. If the matrix is ill-conditioned, then ILK011 can be quite large if nor- 
mal inversion techniques are used to solve {c i} or 4,. 

A similar estimate, although slightly less restrictive, can be made for the modified Newton method, with 
qJ0 ~ 0. For either method,  it can be shown that the solution ~ obtained from the iteration processes satisfies 
the inequality I1~,11 ,< 4/[14,I1[ 2, in which case it can be shown 

IIIIR4, - rtz~,ll~.< 1/2 < 1, 

which implies that the constraint (11) is automatically satisfied. Hence, the solution v(x)  obtained from equa- 
tions (12) and (14) with the computed values of  Ik is bounded. 

For the non-low-frequency region, the initial approximation ~k0 in the iterative procedures will have to 
have a value other than zero. If we have an a priori estimate or rough guess for n (x),  say n*(x),  then we can 
compute the corresponding value ~ * and employ this for the intial approximation, i.e., ~b 0 ~ qJ *. The modified 
Newton process converges if ~b * is sufficiently close to the solution. 

If one does not have a good a priori estimate for  ~b ~, an approach that can be used to obtain a good initial 
estimate is the following. Split S(~) into two parts, a homogeneous portion (with regard to qJ) $1(~) and a 
nonhomogeneous  port!on, in particular the term 4,1II~bl, where 4,1 = 4,o + 4,:. Introduce a parameter k so that 
equation (16) corresponds to the equation 

= $ 1 ( ¢ )  + x 4 , 1 n 1 4 , 1 ,  

with k ffi 1. Starting from h ffi 0 with the solution if(x, 0) ffi 0, one solves this equation for ¢(x ,k )  for a set of 
increasing values of the parameter k. Each solution ~b(x,k + Ak) is found by using the previously determined 
solution tk(x, k) as the initial approximation qJ0 in the Newton process [10]. This process may lead to possible 
bifurcation points h0, points for which the operator [I - S'(tk,ho)] is singular, mad one can end up with more 
than one solution as k ---, 1. 

There still remains the question of whether or not in general these solutions satisfy constraint (11). If 
they do not, then one can modify the solution by adding a function ~ to ~b ± (Recall that 4,: was uniquely 
specified only after requiring the additional condition of a min imum L 2 norm for 4, or 4, - 4, ~, thus this con- 
straint has to be relaxed.) For some cases, t~ need only be a small perturbation to yield the desired result. 
However, the general question of the best way to choose 4, needs to be investigated in detail. 

Note that the Galerkin technique cannot be directly applied to (16), since the operator S(qJ) is not a com- 
pletely continuous nonlinear operator [1 I]. By applying the constraint 

I InR4, -- r t t~ll  < 1, (17) 
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(16) can be written in the form 

q, = 6(IIR* + rl14,) ~ (lldJ - HR4,) ~. 
n--0 

(18) 

The operator given by the right-hand side of (18) with t~ = ~b 0 + ~b I + K ~ ,  (~b0, $± fixed) is a completely con- 
tinuous operator; hence, the Galerkin technique will yield a good approximation. The above constraint (17) 
does not restrict k to the low-frequency region, since it only implies that Re{u~q # 0. Thus, (8) can be 
applied to large frequencies for almost transparent material where n (x) fluctuates about unity, i.e., 

kl f x (n - 1)dx[ < ~r/2. 

4. NOTE ON STABILITY 

Changes in the measured data {b~}~l register corresponding changes in $ directly through the component 
$0(x). As pointed out earlier, to reduce the effects of the ill-conditioning of the matrix {a/j} for large N, the 
generalized inverse or an equivalent method is emplooyed to find $0(x) and reduce the size of the change 850. 
To see how 650 effects v (x) and hence n (x) we note from equation (12) that 

By(1 + IIR$ - lYPIt ~ )  = (I  - vii ~)Sc, b o + [Ko - v(IInKo - l I 1 ) ] S t ~ o  

and 

8¢0 ~ [I - S '(¢)]-18¢o(Ht¢ + IIR¢) + [I - S ' (¢ ) I - l i -¢ I IR  + ~bIIl]8~b o. 

Note that, in the pointwise sense, the change 8v is large when (1 + IIR6 - II!t~) is small, corresponding to 
points where v has a maximum, which is to be expected, For these points, the relative change (1/n 2) 8n 2 = 
[1/(v + 1)] 8v is more important. Apart from this, it is seen that a problem only occurs in certain critical 
cases, namely when I -  S'(~) is nonsingular. This corresponds to a bifurcation point and, hence, small 
changes in 850 can produce nonunique changes in 85 (more than one branch of solution). 

5. COMMENTS 

It should be pointed out that at high frequencies, if n is sufficiently smooth, procedures based upon ray- 
tracing (which is a nonlinear process) may be more practical. 

Measurements made for a set of different incident waves will lead to a system of nonlinear equations. 
This more complicated system should be studied only after a thorough analysis of the single incident wave case. 

The details in the present paper and additional analysis will appear elsewhere. 
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INTRODUCTION 

The n-dimensional tomography problem is solved in closed form by means of the Fast Fourier Transform 
algorithm, thus requiring of the order of Nlog2N complex arithmetic add-multiply operations, where N is the 
number of data points specifying the problem; vis-a-vis the conventional Radon transform solution which 
requires of the order of N 2 operations. The extention from two-dimensional to three-dimensional tomography 
is achieved in a simple and natural fashion. 

For incomplete input information, this solution yields simply and directly a Fredholm Integral Equation of 
the Second Kind, which is again solvable in Nlog2N operations by means of the Fast Fourier Transform algo- 
rithm. 

Some numerico-experimental results are presented, and the connection between these solutions and the 
Physical Optics Inverse Scattering Identity of this author, as well as the Radon transform, are discussed in some 
detail. 

1. A FOURIER TRANSFORM SOLUTION OF THE TOMOGRAPHY PROBLEM 

Consider a two-dimensional function f (x)  and its two dimensional Fourier Transform F(k),  represented 
in the unprimed coordinate system x and k by 

F(k) = f f d"X f(x) d2x . (1) 

In the primed coordinate system x' and k', formed by rotation by an angle ~b about the origin (see Fig. 1), (1) 
is 

F(k'l,k'2) = f f 
i ( k'lx'l + k '2x'2 ) 

e f t x  . . . . .  1, X 2) dX'l dx 2, (2) 

which along the k' 1 axis only, i.e., for k'2 = 0, yields 

F(k '  1, 0) = f f  e jk'lx'l f(x'l ,x'2) dx' 1 dx' 2 (3) 

. f  ik'lX' 1 ~ ~t" I ~ x 
e J J t,X 1, X 2) dx'2 dX'l. (4) 

Next, let the function g (x') be defined as 

g(x'l)  = f f(x'l ,x '2) dx'2, (5) 

which reduces (4) to 

F(k'l, "0) = f eik"X"g (x'0 dx'x (6) 

Since (2) through (6) are invariant under rotation, i.e., valid for all angles ~b, it follows that in the unprimed 
coordinate systems x and k (see Fig. 2) 

r ( k , ¢ )  = f e i~, g(r,C)dr , (7) 
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where, consistent with (5), again in the unprimed coordinate system, in which r'  is orthogonal to r for any 
given value of the angle ~b (see Fig. 2) 

g(r,4,) = f f(r,r" 4,) dr' . (8) 

Taking the two-dimensional inverse Fourier transform of (7) yields 

1 f f e _ ~ k . x  f d ,  ~ f ( x )  = (2,r)2 j . ~  , i  g(r,$) dr dXk , (9) 

where 

cos ¢1 
k =  k [ s inSJ  ' (10) 

d2k = k dk de# . (11) 

Equation (9) is thus the closed form Fourier transform solution of the Tomography problem, i.e., a solu- 
tion for the function f ,  given the function g defined by (8). 

The three-dimensional generalization of the problem and its solution can thus be accomplished by mere 
inspection of (8) and (9), i.e., 

g(r,q~,O) = f f f(r,r;r';ck,O) dr' dr" (12) 

f ( x )  = ( 2 ~ f  f fe-'k'xfe'~g(r,¢,,O) ar a3k , (13) 

where r '  and r" are orthogonal to each other and to r for any given value of the angles ~b and 0. In terms of the 
standard spherical coordinates, 

l c o s O  c o s ¢  I 
k = klcos 0 sin @] , (14) 

/ s i n  0 J 
and 

d3k = k 2 dk sinO dO d¢ . (15) 

2. AN INTEGRAL EQUATION FOR INCOMPLETE INFORMATION TOMOGRAPHY 

Solution (9) requires knowledge of g(r,~) for all angles ~b, i.e., ~E[0,~-]. It should be noted that 
knowledge of g(r,O) is not needed for all ~bE (0, 27r) since g(r,q~) = g(r,~ + , r);  (see (8) and Fig. 2). In most 
practical applications g(r,4~) is known only for some incomplete subset [q51,4~2] of the domain [0,,r]. It is to 
this problem of solving (8) for f ( x ) ,  given g(r,¢o) for the incomplete subset domain ~bE [qbl,~b2], that this sec- 
tion is addressed. Let a characteristic k-space aperture information function A (k) and its complement Ac (k) be 
defined as 

1, V k  E [¢1,~b2] 
A(k)  = 0, V k  q [~bl,62] ' (16) 

and 

Ae(k) = 1 _- A(k)  , (17) 

respectively, and let a (x) and ac (x) be the two dimensional Fourier transforms of A (k) and A c (k) respec- 
tively, i.e., 

a (x) < - - >  A (k) , (18) 

and 

a,(x) < - - >  At(k)  (19) 

Thus, by (13) and (15) 

ac (x) = 8 (x) - a (x) (20) 
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Convolving (9) by a (x) thus yields with the aid of the Fourier transform convolution theorem 

a ( x ) *  f ( x ) =  a(x) ( ~ ) 2 f  f e- 'k 'xf  eikr g(r,6) dr d2k (21) 

1 ffe-'k'xA (k)feikrg(r,6) dr d2k (22) 
(2rr)2 

which by (16) reduces to 

1 fLe-'~'~fe 'k'g(r,6) dr d2k (23) a(x)  * f ( x ) =  ~ 

Since the right hand side term of (23) requires an integration over 6 E [61,62] only, for which g(r,6) is 
known, it follows that this right hand side term of (23) can always be evaluated. It thus becomes convenient to 
define this right hand side term of (23) as the known Ansatz h (x), i.e., 

h(x) = 1 f f  elik.X~ei~g(r,6 ) dr d2k (24) 
(2~r)2 aaA a 

Equation (23), with the aid of (20) and (24), yields 

[8(x)--  ac(x)] * f ( x ) =  h(x) , (25) 

which reduces to 

f ( x )  -- ac(x) * f ( x )  = h(x) . (26) 

Written out explicitly, (26) is a Fredholm Integral Equation of the Second Kind for the unknown function 
f ( x ) ,  in terms of the known kernel ac (x) and known Ansatz for h (x), i.e., 

f ( x )  - f f a c  (x - x') f (x ' )  d2x ' = h (x) . (27) 

Next, an analytic expression for the kernel a c (x) shall be obtained. By (19) 

ac(x) 1 f f  e-ik'XAc(k) k2k (28) 
(21r)2 

which with the aid of (16, (17), and referring to Fig. 3, reduces to 

ae(x) = ~ f'_~ d,Sk 2 e-ik'Xsgn(k2) #kl dk2 , (29) 

where the term sgn (k2) is necessitated by the fact that the direction of integration along the k 1 axis from/3k2 
to a k  2 is reversed for k < 0. 

With the aid of the one dimensional Fourier transform statement 

sgn(k) < - - >  2 (30) 
/x 

and a modest amount of straightforward algebra, (25) yields 

(a - 13) (31) 
ac(X ) = 2,/r2(x2+o~x l)(x 2+ /3x  1) " 

For the case/3 = - a ,  which involves no loss of generality by virtue of the freedom of choice of the cartesian 
coordinate system, (31) reduces to 

ac (x) = a (32) 
~r2(x2- ,~xl)(xz + ,~xl) ' 

which, in the polar coordinate system of Fig. 4, reduces to 

COS260 

ac(r,~b) = ,rr2r2cos2(6 -- 60) COS2(6 + 60) ' (33) 

3. THE CONNECTION TO THE RADON TRANSFORM 

The two-dimensional solution (9) is in a mixed coordinate system, i.e., the known g(r, 6) is in the polar 
coordinate system (r,6) and the unknown f ( x )  is in the cartesian coordinate system (xl,x2). Transforming (9) 
into a single polar coordinate system, i.e., 
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yields 

[x,] lcos,,I 
x2 = r[sin 4~'J ' (34) 

k2 = '~sin 4~ I ' (35) 

d2k = k dk dq~, (36) 

1 r ~ r  ~ 
t "  i e-Jkr'c°s(6-6')J eikrg(r,4~) dr k dk d4~ (37) f ( r , 6 ) =  (-'2-~)2 J0 J0 

1 2rr 
fo f ' -~ fo  ~ e-ik[r'c°s(rb-~b')-r]k dk g(f,~) dr d~b . ( 3 8 )  

(2~r) 2 

The innermost integral over k can be executed analytically, and with a modest amount of algebra (38) reduces 
to the Radon-transform solution of (8). A similar transformation of the three-dimensional solution (13) into a 
single spherical coordinate system yields the generalized three-dimensional Radon-transform solution of (12). 
As shall be shown in the next section, from a numerical-evaluation-efficiency perspective, this analytic evalua- 
tion of the innermost integral is precisely not the thing to do. 

4. NUMERICAL IMPLEMENTATION 

If g (r, ~b) is given for N data points in (r, ¢b), then a numerical execution of the Radon transform solution 
of (8) requires of the order of N 2 arithmetic operations. In contrast, however, solution (9) can be executed 
with the aid of the Fast Fourier Transform algorithm in the order of N log2N arithmetic operations, in the 
mixed polar-cartesian coordinate system of (9). Specifically, the innermost integral over r, say 

F(k, ga) = f e ~kr g(r,d~) dr , (39) 

is executed in N6(1/2Nr log2Nr) operations with the aid of the one-dimensional FFT algorithm N~, times, 
where Nr and N6 are the number of data points in r and ~b respectively, and N = N6A ~. Next, a two- 
dimensional cartesian array F(kl,k2) of size N is filled with zeros, and then the two-dimensional array F(k, qb) 
is mapped into the two-dimensional cartesian array F ( k l , k  2) by a straightforward rotation. The mismatch 
between the polar and cartesian grid points is ignored, and taken merely to the nearest point. Such a mapping 
is necessitated by the fact that the FFT algorithm requires equally spaced grid points in each dimension. Such a 
mapping can be executed in N-logic operation, The outer integral over k, say 

1 + k2x 2) 
f (X l ,X  2) = ~ f f e '(k~x~ F ( k l , k  2) dk I dk 2 , (40) 

is then executed in 1/2Nlog2N operations with the aid of the two-dimensional (inverse) FFT algorithm. The 
previously mentioned mismatch between the polar and cartesian grid points introduces errors in the k-space. 
The FFT operation into the x-space thus constitutes a global smoothing of these errors, which decrease with 
increasing N. Any more sophisticated, and therefore more computer-time-consuming interpolation schemes for 
the polar to cartesian-grid-point mapping is thus totally unwarranted. 

5. NUMERICO-EXPERIMENTAL RESULTS 

Solution (9) was computer implemented for N = 32 × 32 for a unity density disc of radius 7.5, and a 
unity density disc of radius 11.5 with a concentric hole of radius 5.5, with the results shown graphically in Figs. 
5 and 7 respectively. Figures 6 and 8 are replicas of Figs. 5 and 7 respectively, with the correct reference circle 
superimposed. In these figures the size of the solid and hollow squares are proportional to the positive and 
negative values of the reconstructed density functions f ( x )  respectively. It appears that a raster of N = 32 × 
32 is marginally.adequate in size to accomplish the previously mentioned polar to cartesian grid point mismatch 
error smoothing. 

This solution was also computer implemented for a raster of N = 64 x 64 for a unity density disc of 
radius 24.5, and a unity density disc of radius 24.5 with a concentric hole of radius 16.5, with the results shown 
graphically in Figs. 9 and 10 respectively. It appears that a raster of N = 64 x 64 is most adequate in size for 
the grids mismatch error smoothing. 
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The method-of-successive-approximation solution 

f .+ , (x)  = f f a c ( x  - x') f . (x ' )  d:x  ' + h (x) , (41) 

of the integral equation (27) for incomplete information was also computer implemented. The initial approxi- 
mation f0(x) = 0, which yields analytically f l  (x) = h (x), was taken as the starting point of the numerical itera- 
tion. The Ansatz h (x) was evaluated as per (24) by the previously described method for the complete informa- 
tion case in N log2N operations, and the convolution implied by (41) was executed with the aid of the two- 
dimensional FFT algorithm in N log2 N operations. In Figs. 11, 13, and 15 are shown the Ansatz h (x), the first 
iteration f2(x),  and the sixteenth iteration fiB(x) respectively, for a unity density disc of radius 7.5 in a N = 32 
x 32 field. The information aperture was taken as 45 degrees (out of the full 180 degrees field). Figures 12, 
14, and 16 are replicas of Figs. 11, 13, and 15 respectively, with the correct reference circle and information 
aperture superimposed. 

6. CONCLUDING REMARKS 

The FFT implementation of the two-dimensional solution (9) is idealy suited to x-ray and ultrasonic 
tomography applied to medical radiology and nondestructive material testing. A firm-wired array processor FFT 
implementation of this solution will yield real-time displays for rasters as high as 1024 x 1024. 

The disc-to-disc FFT implementation of the two-dimensional solution (41) for the incomplete information 
case is well suited for ocean tomography for data up to the order of 107. 

The three-dimensional solution (13) deserves the following discussion. If g(r, rb,O) as per (12) is taken 
as the projected area function of r, for the complete set of the spherical angles ($,0) ,  as yielded by the One- 
Dimensional Physical Optics Inverse Scattering solution of this author [1] and KENNOUGH and MOFFATT 
[2], then solution (13) is a method for the reconstruction of the full three-dimensional scatterer. Furthermore, 
if G (k, $ ,  0), the one-dimensional Fourier transform of g (r, q~, 0), is properly recognized as the directly meas- 
ured complex field cross section of a scatterer divided by k 2, the solution (13) is nothing more then a restate- 
ment of the Physical Optics Inverse Scattering Identity [3] of this author. 
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Fig. 3. Coordinate variables referring to Eq. (29). 
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Fig. 4. Polar coordinate system referring to Eq. (33). 
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Fig. 8. Reconstructed densiO, disc of radius 11.5 concentric hole of radius 5.5 in a 32x 32field 
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Fig. 9. Reconstructed unity density disc of  radius 24.5 in a 64x64 field. 
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Fig. 10. Reconstructed unity density disc of  radius 24.5 with concentric hole of  radius 16.5 in 64x 64field. 
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Fig. 11. A nsatz of  reconstructed unity density disc of  radius 7. 5 in 32x 32 fieM and 45 degrees information feld.  
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Fig. 12. Ansatz o f  reconstructed unity density disc o f  radius 7.5 in 32x32 field and 45 degrees information field 
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Fig. 14. First iteration of  reconstructed unity density disc of  radius 7.5 in 32x 32 field and 45 degrees information field 
with reference circle and information aperture. 
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Fig. 15. SR~en~ iteration ~reconstmc~d uni~ ~nsi~ ~ c  ~ra~us Z5 in 32x 32 fieM and 45 degrees 
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Fig. 16. Sixteenth iteration of reconstructed unity density disc of radius 7.5 in 32x 32Ae/d and 45 degrees information 
field with reference circle and information aperture. 
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INTRODUCTION 

I would like to describe to you two acoustical inverse problems that arise in the physical description of 
speech production and of hearing. 

The first problem is that of estimating the (time-varying) shape of the human vocal tract during normal 
speech productiofi. The use of acoustical measurements  for this purpose dates back to the late 1960's. I will 
summarize the progress made on this problem, with particular emphasis on time-domain methods. 

The second problem concerns the estimation of the mechanical properties of a certain membrane - the 
basilar membrane - in the inner ear, which plays-a crucial role in hearing. To the best of my knowledge, the 
application of inverse-scattering theory to this problem is being suggested here for the first time. 

To the present audience, probably the most  interesting aspect of this work is the fact that inverse scatter- 
ing theory has application in such a remote field as anatomical measurements .  I will therefore spend a consid- 
erable part. of  the paper in giving you our motivation for studying these problems, and also in giving you an 
idea of the type of physical measurements  that need to be made in order to apply the theory. 

As we shall presently see, both problems are formally equivalent to the problem of synthesis of nonuni- 
form distributed transmission lines. The end result of our analysis will therefore be an integral equation which 
should be familiar to most  of  you. However, the manner  in which we derive the equation, using the physical 
concepts of  causality, charge (or mass) conservation, and passivity, is novel and of independent interest. 
Another  novel feature is the inclusion of certain types of dissipative loss and other perturbations into the 
transmission line equations. 

1. THE VOCAL-TRACT P R O B L E M  

Figure 1 shows a sketch of the side view of a human vocal tract. During nasal speech sounds -- e.g., 
m, n, ng --  there is an opening into the nasal passage. We will ignore such situations. For our purposes, 
therefore, the vocal tract is just a bent tube with a nonuniform cross section. To produce a speech sound, we 
adjust the tongue, jaw, and lips so as to produce the shape appropriate to the speech sound. Then we excite the 
tube with a sound source. For vowels, the source is the stream of quasi-periodic pulses produced by the vocal 
cords (glottis). For fricative sounds --  e.g., s, sh, f ,  th - -  the sound source is the turbulent air flow through a 
constriction. Some sounds -- e.g., v, zh, z - -  require a combination of these sources. 

For the purposes of  studying acoustic wave propagation, the tract is assumed to be straightened out as 
shown in Fig. lb,  and wave motion is assumed to be planar. These assumptions are justified for frequencies 
below about 4 'kHz. Under  these assumptions, the "shape" of the tract at any instant of time is adequately 
specified by the cross-sectional area C ( x )  as a function of the distance x from the lips. During speech produc- 
tion, of course, C is also a function of time. However, the time variation of C is so slow that the tract can be 
regarded as assuming a succession of stationary shapes. We will, therefore, talk of C ( x )  as if it were time- 
independent. 

(a) Ideal Stationary Tract 

Assume first that the tube has rigid walls and is filled with a perfect gas with density P0 and sound velocity 
c. Then, choosing units such that C(0) ~ c ~ P0 = 1, the pressure p ( x , t )  and the volume velocity u ( x , t )  in 
the tract satisfy the equations 
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Op 1 Ou (la) 
Ox C(x) Ot' 
Ou O" 

= - C ( x ) - ~ ' .  (lb) 
O t  

If the function C(x) is known and the excitation is known, then the speech wave (i.e., the volume velo- 
city at the lips) can be computed by standard methods. Thus, for example, suppose that the excitation is a 
volume velocity -g ( t )  at the vocal cords. Then what is needed is a solution of the partial differential equations 
(la, lb) subject to the boundary conditions: 

u (L,t) = -g ( t )  at the glottis, 

p(O,t) = 0 at the lips. 

(The second condition assumes a pressure release boundary at the lips. A more accurate boundary condition 
would be a termination representing the radiation load.) 

This is the direct problem of speech production. However, in order to carry out the solution, the area 
function C(x) must first be estimated. The traditional method of estimating the area function is to make an 
x-ray movie of the side view of the tract during normal speech production. Combining this information with 
estimates of the cross-dimensions from castings of the stationary tract, gives C(x) at any instant during a 
speech sound. 

Besides the fact that exposure to x-rays is highly undesirable, the method is extremely laborious and not 
very accurate, because of the uncertainty in the cross dimensions. 

An alternative to this approach is to solve the inverse acoustical problem ; i.e., to estimate C(x) from the 
behavior of the solutions of (la) and (lb) at the boundaries. The obvious first question is: Can C(x) be 
estimated from the speech wave? The answer is no, even if the excitation function is known/ (It is possible to 
derive C(x) from the speech wave but only if one is willing to make a number of drastic, unjustified assump- 
tions. See [1] for a discUssion of the issues involved.) 

However, the area function can be uniquely determined, provided one is willing to make appropriate 
acoustical measurements at the lips. The first such suggestion [2,3] was based on a frequency domain measure- 
ment of the driving point impedance at the lips. (The driving point impedance Z(s) is the Laplace transform 
of the pressure developed at a point when an impulse of volume velocity is applied at the same point. What is 
measured is Z(s) for s = ico.) The poles and zeros of this impedance constitute two infinite sequences of 
interlaced real eigenvalues (corresponding to the tract being, respectively, closed and open at the lips). Given 
all these eigenvalues, it is well known [4] that C(x) in Eqs. (la) and (lb) can be uniquely recovered. 

It is, of course, not possible to measure the infinite sets of eigenvalues. Even if it were possible to meas- 
ure them, they would be useless, because, as mentioned above, the assumption of planar wave motion is 
invalid at high frequencies. One can get around this difficulty if the length of the tract and the boundary condi- 
tion at the glottis are both known. Then the eigenvalues above about 4 kHz are assumed to be those of the 
uniform tract of the same length with the appropriate boundary condition. 

An alternative frequency domain approach [5] recovers C(x) from the poles and residues of the 
impedance (with a similar assumption about the high frequency information). 

The trouble with these frequency domain methods is that neither the length nor the boundary condition at 
the glottis is known accurately; and each of these strongly affects the reconstructed area function. 

The time-domain method, which we will now discuss, recovers C (x) without a knowledge of the length 
of the tract or of the boundary condition at the glottis. This method is based on a measurement of the impulse 
response at the lips. (See subsection (c) of this section for a brief description of the measurement procedure.) 
The impulse response H(t) is the pressure developed at the lips due to an impulse of volume velocity at the 
lips. (The function Z(s) above is just the Laplace transform of H(t).) Thus, 

Po(t) = (H*uo)(t) (2) 

where the subscript 0 refers to the lips and • denotes convolution. Now, if the vocal tract were an infinitely 
long uniform tube, then H ( t ) =  8(t).  (The strength of the impulse is 1 because of our choice of units.) 
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Clearly, then, for an arbitrary tract H ( t ) =  8 ( t ) +  h (t). It can be shown that h (t) is continuous if C(x) is 
continuously differentiable. 

Two rather different, highly physically motivated arguments give C(x) ,  x ~< T, in terms of h (t), t ~< 2T. 

i) If a volume velocity f ( t ) ,  t >1 O, is applied to the lips, then at t = a, the disturbance in the tube trav- 
els a distance a (since c ~ 1 in our units). Therefore, from conservation of mass, 

fo a f ( t )dt  = fo a p (x,a)C(x)dx, (3) 

where p (x,t) is the density perturbation in the acoustic wave. However, p = pc 2, so since c = 1, 

fo~f(t)dt = f f  p(x,a)C(x)dx. (3a) 

As shown in [6], if f ( t )  satisfies the integral equation 
1 p2a 

f ( t )  +-2Jo h([ t - . t l ) f ( z )d . t= 1, O ~ t ~ 2 a ,  (4) 

then p(x,a) = 1, x <~ a. Thus, i f f ( t )  satisfies (4), then 

f0°I(t)dt = f o  ° c(x)  = V i a ) .  (5) 

1 h ( I t - z D  Thus, given h (t), 0 ~< t ~< 2a, one solves (4) for f ( t ) .  It can be shown that the kernel 8 ( t -  ~) + 

is positive definite, provided C(x) is finite and bounded away from 0. Positive definiteness guarantees that (4) 
has a unique solution. Once f ( t )  has been found, .(5) gives the volume Via) up to the distance a. Repeating 
for 0 <~ a ~< T, one gets V(a) and, hence, by differentiation, C(a) as a function of a. The computation can be 
further simplified because it can be shown that 

f2(0) = C(a). (Sa) 

ii) The second physical argument is intuitively more appealing in the electrical analog of (la) and (lb).  
Note that if pressure is identified with voltage and volume velocity with current, then (la) and (lb) become 
the telegrapher's equations for a transmission line with capacitance per unit length given by C(x) and induc- 
tance per unit length by C- l (x) .  

Suppose we connect a negative capacitance - F  to the transmission line at x = 0, as shown in Fig. 2. The 
combined system is in general no longer passive. However, after connection of the capacitance, the system 
stays passive for a time interval whose duration depends on F. During this interval, an arbitrary current i (t) 
flowing into the circuit delivers energy to it. 

1 To see this, note that the input impedance at the terminals in Fig. 2 is Z(s) - -~s"  Therefore, a current 

i(t) flowing for an interval 0 ~< t ~< 2a and carrying a total charge Q delivers an energy E(2a) given by 

1 _0Z f 1" 2a j02a h([t-r l ) i ( t ) i (r)dtdr  (6) = ao 2ai2(t)dt + 2 ao - 2F " E(2a)  

The i (t) which minimizes this turns out to be precisely the function f ( t )  which is a solution of (4). And the 
minimum value of energy corresponding to this current is 

Thus, the system is stable if 

r >~ foaf(t)dt.  (8) 

On the other hand, it is intuitively clear (and proven rigorously in [7]) that the system is stable up to t = 2a as 
long as the series connection of - F  and the cumulative capacitance V(a) of the line up to x = a positive. That 
is, as long as 

1 1 /> O. (9) V(a) r 
The inequalities (8) and (9) again give (5). 
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(b) Tract with losses and yielding walls 

When the tract has dissipative losses or if the walls are not rigid, then (la) and (lb) no longer apply. To 
introduce these effects, it will be convenient to take Laplace transforms. Let P(x,s), U(x,s) represent the 
Laplace transforms of p (x,t), u(x,t), respectively. Then, for the tract with losses and yielding walls, P and U 
satisfy 

1 + z (x,s) U, (lOa) 
Ox 

U [sC(x) +y (x,s)lP. (lOb) 
Ox 

Physically, z(x,s) represents viscous losses in the air, per unit length of the tube, and y (x,s) represents the 
wall admittance per unit length. 

It is easy to see that in this case input measurements alone cannot recover C(x). This is because the 
impulse response in this case is again of the form 8 (t) + h (t) and the corresponding kernel is positive definite. 
There is, therefore, no way of telling whether the impulse response is that of an ideal tube or of a tube with 
losses and/or yielding walls. 

Suppose, however, that z(x,s) and y(x,s) are known, or their functional forms are known. Is it possible 
then to recover C(x) from the measured H ( t ) ?  In the following three cases we know how. 

(i) If 

1 
z (x,s) = C - - - ~ a  (s), (1 la) 

y(x,s) = C(x)/3(s), ( l lb )  

and a (s) and/3 (s) are known, then [8] C(x) can be uniquely recovered. Although these functional forms for 
z(x,s) and y(x,s) appear to be rather contrived, it can be shown [9] that the vocal tract is accurately modeled 

this way, with a(s) = 0 a n d / 3 0 )  = b s + e ' and the quantities b and ~ can be estimated from a variety of 

experimental data. 

For z(x,s) and y(x,s) given by ( l la)  and ( l lb ) ,  it is fairly straightforward to derive a relation between 
the measured input impedance Z(s) and the input impedance Z( s )  of the same tract but with a =/3 = 0. This 

relation turns out to be 

Z(s) = - ]  s+a(s)  Z(V[s+a(s)] [s+/3(s)]) .  (12) 
~ / s  + / 3 0 )  

It is important to realize that (12) implies a causal, invertible relation between the corresponding impulse 
responses, H(t) and/2/(t). Thus, Tseconds of H(t) yields/2/(t) for Tseconds. Once [ I ( t )  is known, C(x) is 
computed as in Sec. 1 (a). 

(ii) If z(x,s) = 0 and y(x,s) 1 sm(x) (i.e., a lossless tract whose walls have mass m (x) per unit 

length), then the problem is solvable for any given m(x). In this case [8], if D(x) is the area function 
obtained by the method of Sec. 1 (a) from the measured H ( t ) ,  then the true area function C(x) satisfies 

F- m(x),f-C = t ~  (13) 

with C(0) = D(0),  and C'(O) = D'(O). 

(iii) If z(x,s)= F(x,C(x)) and y(x,s)= G(x,C(x)), with the functions F(.,.) and G(., .) known, then 
C(x) can be determined [10]. Note that this is a very general distribution of resistive and conductive losses. 
The algorithm is too complicated to summarize here. It is to be described (along with generalizations and 
experimental results) in a forthcoming dissertation [11]. 

(e) Measurements 

Figure 3 shows a sketch of the impedance tube used for the measurement of impulse response. The 
sound source produces short duration impulses of volume velocity and the wedge speeds up the return to quies- 
cent conditions. The person holds the flexible coupler to the lips and moves the vocal tract as in normal speech 
without phonating. The apparatus is an adaptation of the arrangement first used for frequency-domain meas- 
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urements  [2,3]. In one respect, the time-domain measurement  is more exacting because it is harder to gen- 
erate impulsive excitation than sinusoidal. On the other hand, the wedge need not be reflectionless; it need 
only ensure that sound energy from one pulse has died out adequately before another pulse is applied. This 
makes the wedge design much simpler. 

The hard-walled impedance tube transmits acoustic waves undistorted in either direction. Therefore, the 
microphone measurements  can be translated to give the corresponding measurements  at x = 0. The point 
x = 0 is chosen to be inside the tube (rather than exactly at the lips); therefore, as assumed in the derivations 
above, C (0) is known. 

For a typical vocal tract of  length about 17 cm and the velocity of sound about 34 km/sec,  the round trip 
travel time from lips to glottis is about a millisecond. Therefore, a measurement  of h (t) for about 1.5 msec is 
more than adequate to recover the shape of the entire tract; and it is quite feasible to design the wedge to allow 
measurements  once every 20 msec or so. Thus,  it is possible to make a 50 frame/sec movie displaying the 
variations of C(x)  during normal speech. I made such a movie for a number  of  spoken sentences [12] and 
demonstrated the feasibility of this procedure. However, at the time the conclusion was that the experiment 
needed to be performed with much greater accuracy than I had been able to attain. More recently, several 
groups have started making such measurements  [11,13,14,15]. It is to be hoped that these efforts will lead to 
accurate estimates of dynamically varying vocal tract shapes. 

2. THE BASILAR MEMBRANE PROBLEM 

We turn now to a problem that arises at the other end of the "speech chain" --  the  inner ear. The succes- 
sive panels of Fig. 4 show the organ of hearing in progressively increasing detail. The motion of the ear drum 
in response to an impinging sound wave is transmitted, via a mechanical linkage of three small bones, to a 
snail-shaped organ called the cochlea. If the cochlea could be unrolled, it would be a fluid-fflied conical tube, 
longitudinally partitioned into three chambers. The basiiar membrane,  with which the present discussion is 
concerned, is one of the partitions. The other dividing membrane,  called Reissner 's  membrane,  will be ignored 
here; it appears to be acoustically transparer/t, although it serves the-important function of electrically isolating 
the fluids on its two sides. 

The motion of the stapes (which is the last of the bones in the link~age) pushes fluid in and out at the oval 
window. The fluid motion produces motion of the basilar membrane perpendicular to its resting position. This 
motion is sensed by hair-like endings of nerve cells (see Fig. 4); and it is the changes in the firing patterns of  
these nerve cells that are ultimately interpreted as the sensation of sound by the brain. An accurate description 
of the motion of the basilar membrane is, therefore, a necessary first step toward the understanding of the 
mechanism of hearing. 

It has been known for quite some time that if a sinusoidal velocity is imparted to the stapes, then the dis- 
placement of the basilar membrane shows resonance behavior. The  displacement has maximum amplitude at a 
certain point along the membrane.  This point of max imum displacement moves closer to the stapes as the fre- 
quency of the excitation increases. Accurate measurement  of this motion is a rather difficult task. Some idea 
of the difficulty is conveyed by the dimensions involved. In human cochleas, the entire length of the basilar 
membrane is about 35 mm,  the cross dimension of the chamber on either side of it is 1-3 mm,  and the dis- 
placement of the basilar membrane due to a typical sound wave is less than a micron. Further, as mentioned 
above, this structure is rolled up into a spiral and embedded in bone, which makes it highly inaccessible. In 
spite of these difficulties, several ingenious experiments were conducted during the 1940s and 1950s on 
cochleas excised from cadavers. Many measurements  were made and models proposed to explain the resonance 
phenomena. (See [16] for a review of this work.) However, it is only in recent years that accurate measure- 
ments  of its motion have been made in vivo, using sophisticated measuring aids such as capacitance probes, the 
Mossbauer effect and laser interferometry. These refined measurements  have provided the impetus for more 
refined models of  cochlear mechanics [17, 18,19]. Our discussion will be based on the formulation of [19]. 

The "unrolled" cochlea is shown schematically in Fig. 5a. To a good approximation, the outer walls of the 
conical tube can be assumed rigid and the fluid filling it may be assumed incompressible. The cross-sectional 
area varies by a factor of  about 4 or 5 along the length of the tube. As we shall see presently, this is a very 
small variation in comparison with the range of variation of the mechanical properties of the basilar membrane.  
Therefore, we will idealize the conical tube to a rectangular tube, as shown in Fig. 5b. Also, since the major 
components of fluid motion are in the x- and y-directions in Fig. 5b, we will ignore variations of quantities in 
the z-direction (i.e., perpendicular to the plane of the paper). Finally, we will assume perfect symmetry. That 
is, at two points located symmetrically with respect to the membrane,  we will assume the y-components of velo- 



295 

city to be identical and the x-components to be equal in magnitude and opposite in direction. With these ideali- 
zations, we might just as well replace the partitioned chamber of Fig. 5b by the single rectangular box shown in 
Fig. 5c. That figure also shows the coordinate system, as well as the length L and the height H o f  the box. 

It is generally assumed that the membrane is locally reacting, i.e., its velocity at any point depends only 
on the pressure across it at that point. As long as the motion is linear, therefore, the membrane is represented 
by a wall with an impedance Z(x , s ) .  This impedance is well approximated by a damped spring-mass oscillator, 
i.e., 

Z(x , s )  = sm(x )  + K ( x )  + R ( x ) .  (14) 
s 

Estimates are that K varies by a factor of over 100,000:1 from one end to the other, and R by a factor of over 
300:1. On the other hand, m is more or less constant. 

With these preliminaries, let us sketch the derivation of the equation of basilar membrane motion. Since 
the fluid is incompressible, the pressure P (x,y,s) satisfies Laplace's equation 

V2P = O, (15) 

subject to the boundary conditions 

0__PP = [ -psV,, y = 0, 
Oy [ 0 y = H, 

OP 
- - = - p s U o ,  x =  ± L. 
Ox 

Here, p is the fluid density, U0 is the velocity applied to the stapes, and V(x,s)  is the velocity of the basilar 
membrane. This problem has a unique solution for P in terms of U0 and V. The solution is facilitated by a 
conformal map of the rectangle to the upper half-plane by means of an elliptic function. The result, specialized 
to y = 0, is 

f_C r ( I x -x 'D  V(x',s)ax'. (16) P(x,  O,s) = - psUox - r 

The function F ( x )  is expressed in terms of elliptic functions [19]. However, for the dimensions of the cochlea, 
it turns out that, to a very good approximation, 

F(x )  = ps  ( [ x l -  L) + sp-L~-H (x). 
2H 3 8 

Substituting for F(x )  in  (16) gives 

e ( x ,  o,s) = - p s V o x -  I x - x ' l  

However, P(x,  O,s) = - Z ( x , s )  V(x,s) .  Thus, 

2(x,s) V(x,s) = psVox + .eL f_~ Ix-x' l  V(x',s)ax', (17) 
2H 

where we have defined Z = Z + p sH/ ) .  Equation (17) is an integral equation for V, whose solution relates V 
to the input velocity U 0. If we define P = ZVand differentiate (17) twice with respect to x, we get 

a2P = ~ P. (18) 
dx 2 H Z  

This is recognized as a canonical form of the transmission line equation, with somewhat unusual series and 
shunt elements. Fortunately, it turns out that z~ is well approximated by Z -~ K ( x ) / s  up to reasonably high 
frequencies at the stapes. This is because K ( x )  is greatest near the Stapes, and also the stapes is far away from 
the resonance point for most frequencies of interest. With this approximation, (18) becomes 

aeP = ps2 P. (19) 
dx 2 H K  (x ) 

It is well known that this equation is equivalent to the second order equation for pressure for the lossless vocal 
tract. To see this, note that eliminating Ufrom (10a) and (10b) in the lossless case (z = y = 0) gives 

d d - ~ c - ~  P = s2Ce. (20) 
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Transform x to the independent variable ~ defined by 

= y0 x dk 
C(X) " 

Then, i f P ( x ) =  Q(~:), (20) becomes 

d 2 
d~ 2 Q = s2C2(x(~))Q, (21) 

which has exactly the same form as the basilar membrane equation (19). Thus, the theory of Sec. 1 above can 
be applied to give K (x) in terms of impulse response measurement at the stapes. 
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Fig. 1. (a) Side view of  the vocal tract; (b) idealization to a straight tube with variable cross-sectional area. 
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Fig. 2. The passive network (transmission line) seen through a negative capacitance. 
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Fig. 3. One form of  the impedance tube used to measure impulse response. 
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INTRODUCTION 

Recent advances in broadband antenna theory and technology have made possible monostatic and bistatic 
polarization radar systems with sufficient isolation between the co- and cross-polarized channels for both linear 
and circular polarization measurement  over a wide band of harmonic frequencies. Since most of  the applicable 
microwave imaging and target identification schemes are based on high frequency approximations, those tech- 
niques based on Physical Optics Far Field Inverse Scattering will be restudied applying Radon's  theory of image 
reconstruction from projections. In particular, there still exist various unresolved questions relating to the 
band-limited, aspect-direction-limited, sparse-data case which can best be treated in the Fourier-Radon projec- 
tion space. 

1. THE PHYSICAL OPTICS AP P R OXIM AT ION 

The development of electromagnetic inverse scattering theories applicable to practical radar imaging of 
isolated, perfectly conducting, smooth, and closed-shape scatterers derived from the Physical Optics (PO) 
approximation 

J( r , t )eo  = 2fi x Hi(r, t)  , (1) 

with first order correction terms [1] 

J(r't)~°'= 2Agff a×{[-~÷ l-o=-laP°(rt)×ar} a s ' s , , ,  co~ o t I ' (2) 
is not complete. A succinct introduction in the historical development sequence of various Physical Optics Far 
Field Inverse Scattering (POFFIS) identities is presented here with the specific objective to isolate still existing 
open problems [2, Chap. 5]. 

2. THE R A M P  RESPONSE IDENTITY 

One of the first POFFIS identities was discovered in the fifties at ESL-OSU and was documented first in 
[3]. It showed that the target ramp response to F R (t') is proportional to the target silhouette area A (r') along 
the radar line of incidence r' = ct'/2, where 

FR(t') = 1 A(r')lr,=ct'/2, for 0 ~< r'~< r~. (3) 
,h-C 2 

Here, r' = +O identifies the tip of the target for which A (+O) = 0, r = r~ the shadow boundary for which 
A (r~) = Amax, and r ' =  / t h e  tip in the shadow region, respectively; and (3) is not valid in the umbra region 
r '  > r~. This temporal relation, which was stated in the literature much later also for the radar case [4] and for 
sonar applications [5], was first utilized in radar target imaging by KENNAUGH and MOFFATT [6, 1965] and 
in Fourier Transform Imaging by KELLER [7]. This identity, applied as formulated, can only be used to 
recover the weighted shape of axially symmetric targets within the illuminated region for incidence along the 
invariant axis of a rotationally symmetric target. It also requires low-frequency-regime data for reconstructing 
the target and response [6], thus apparently violating the inherent PO assumption. A rather intuitive attempt 
using a three-orthogonal look-angle approach by YOUNG [8] is not unique, but may yet be useful in develop- 
ing approximate target-portrayal discrimination techniques. It also should be noted here that the formulation of 
(3), in essence, provided a means to introduce the concept of a target's unique set of natural frequencies [9]. 
Yet, for true three-dimensional image reconstruction of three-dimensional arbitrary, nonsymmetrical-shaped 
targets, a generalization of (3) must  be sought or another entirely different approach may be required. 
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developing approximate target-portrayal discrimination techniques. It also should be noted here that the formu- 
lation of (3), in essence, provided a means to introduce the concept of a target's unique set of natural frequen- 
cies [9]. Yet, for true three-dimensional image reconstruction of three-dimensional arbitrary, nonsymmetrical- 
shaped targets, a generalization of (3) must be sought or another entirely different approach may be required. 

3. THE SPATIAL FREQUENCY x-SPACE IDENTITY 

A spatial frequency domain POFFIS identity was developed in the early sixties and seems to have been 
documented first by BOJARSKI [10] relating the monstatic scalar complex field cross-section p (r) in Fourier 
space x = - 2k fii~c 

p(x) = f f . o>ox.fio e x p ( - j x . x ) d S ,  (4) 

to the characteristic target-shape function 

y ( x )  = (2~) -3 fffr(,,)expU~.x)d3x, (5) 

where 

r ( ~ )  = 2,/-# p ( x ) + p ' ( - x )  = f f f  e x p ( - j x ,  x ) d 3 x -  fffv(x)exp(-j,,.x)d'x, (6) 
b,I 2 

and where use was made of joining the two complementary sets of monostatic-field cross sections p(x)  and 
p * ( - x )  for x and ( - x )  across an idealized smooth shadow boundary [2, Chap. 5.2]. This x to x-space Fourier 
transform identity states that if the backscattered field could be measured in amplitude and relative phase at all 
frequencies ~o = ke and at all aspects r / Ix [ ,  then F ( r )  would be known for all x, and (4)-(6) would yield a 
self-consistent solution of the inverse diffraction problem for a perfectly conducting scatterer in the PO-limit 
[11]. A bistatic extension of this scalar POFFIS identity was attempted by ROSENBAUM-RAZ [12] which is 
inconsistent with the monostatic-bistatic equivalence theorem of KELL [13]. 

4. THE RADON PROJECTION SPACE (~,q) FORMULATION 

The construction of F (x) from two complementary monostatic scalar-field cross sections according to (6) 
suggests from the formal derivation of (3) given by BOERNER [2, Chap. 5.1] that a strict transform relation 
between (3) and (4)-(6) must exist. Such a relation was established by DAS and BOERNER [14, 1978] with 
the aid of the projection transformation theory of RADON [15]. Similar to constructing the complete aug- 
mented cross section F (x) from two complementary monostatic cross sections p (x) and p * ( - x )  respectively 
(view angles x/Ix] and (-x)/b¢[  are considered complementary), the silhouette area functions A (r') and 
A ( - r ' )  for two complementary view angles need to be curve-fitted across the shadow boundary at r ' =  r0 so 
that the complete projection Ac(r') is thus obtained from A(r ' ) lr 'o  (extracted from FR(t ' , x / ]x l ) ) ,  and 
.4 (-r ' ) I r0,  (extracted from FR ( t ' , - x / IK]) ) ,  and thus extending across the length of intersection from r ' =  0 
across the shadow boundary at r '  = r~ to the other specular point in the shadow region at r' = 1, so that 

Ac(r')  = .4 (r')lo ° + A ( - r ' )  If °. (7) 

Truncation of F R (t') at r ' =  r'0, which is still unresolved for the inverse problem, and curve fitting the data 
across the shadow boundary will introduce an error that has not been analyzed properly in the literature. It 
should be noted that for the rotationally symmetric target case with nose-on incidence MOFFATT and YOUNG 
[16] obtained rather satisfactory results by extending `4 (r') from r~ to 1, i.e., utilizing F R (t') up to its first zero 
crossing. Major additional analyses are required [17]. 

In Radon projection space (~: unit vector in direction of incidence x/Ix];  q :  Euclidean distance along 
projection line r ' )  the Radon transform ~ (~,q) of the characteristic silhouette function y (2) in image space, as 
defined in (5), is given by [2, Chap. 5.3] 

y(~,q) = f f f.y(x)8(q-(e.x))d3x, (8)  

which relates to its Fourier transform -)(a~) in a space [2, Chap. 2.3.3] as 

'~(~,q) = (2"n'f k f ~(a~)eJ~qdo~, (9) 

where a is a scalar variable denoting reciprocal space radius. For the particular aspect direction K = (0, 0, K'), 
i.e., projection for a particular (~,q) along r', a = K', the relation between "~(~,q) and Ac(r ' ,K/]KD, as well as 
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that between 3' (x'~ ¢ )  and F (K), needs to be established. For targets with rotational symmetry, the relation was 
established in [14] and for the general nonsymmetrical case in [17], where it is shown [2, Chap. 5.3] that 

-~ (~,q) = A~(r' ~/IK l) (10) 

and 

q(x'~) = r ( x )  f o r t  = (0,0,K'). (11) 

Thus, we have established that the complemented Kennaugh-Cosgriff identity (3) and the Bojarski-Lewis iden- 
tity (4)-(6) establish a Radon-Fourier transform pair [18]. This relation requires further exhaustive analysis, 
particularly with respect to the complementation and curve-fitting procedures adopted in constructing A c (r') and 
F(K) in (3)-(11). 

5. THE LIMITED-APERTURE PROBLEM AND ITS SOLUTION 

Since in practice data are given or usually known only over a subset of x-space, the Fourier transform of 
(5) can no longer be used to obtain F (x) directly. It was LEWIS [11] who showed if D is the limited region in 
which F (K) is known, one may choose K (r) being zero outside Q and nonzero inside so that K (K)F ( r ) - -~  (r) 
and 

f ( x )  = (27r) -3 f l y  F(x)exp(jx'x)d3x. (12) 

Lewis shows that if (12) can be solved, the size ka and the shape of the target can be recovered, at least within 
D. However, LEWIS [11, 1969], and then more rigorously PERRY [19,20], clearly demonstrated the ill-posed 
nature of (12), although TABBARA [21,22] was able to reconstruct with striking accuracy the shape and the 
electrical size ka of a conducting sphere using only low-frequency data, which in itself is violating the underly- 
ing PO assumption (1). It should be noted here that this perplexing result may yet be due to projecting a given 
solution, though assumed to be unknown, back onto itself by virtue of using its spherical wave expansion [23] 
which ultimately converges into its spherical dominant momentum ka [24]. 

A unique solution for the band and aspect-limited (K_ < [r[ < K+, f~ < xlxl) ,  ill-posed case of (12) was 
given by MAGER and BLEISTEIN [25] making use of the directional derivative concept introduced by 
MAJDA [26]. The Fourier transform A (K, f)) of the directional derivative A (x, f)) of (3) across the bounding 
surface S of B in direction }, with fi the local outward unit normal to S, may be expressed as 

A(g,fJ) = f / ~ . h  exp(-jr'!~)dS(~). (13) 

Using a multidimensional stationary-phase evaluation [25], the reconstructed directional derivative AK(X, f~) 
over the limited K(K) aperture defined in (12) becomes 

(~s)'P(~s) ) K+ 
Re{Ax(X,f)(~:s))} - 2rrOV2 s in{ Ix (x -  ~s I}IK. (14) 

This identity states that the real part of AK(X,f)) behaves as a band-limited delta function with a central lobe 
peaking on the target surface S in regions with surface normals h falling within the family of aperture direc- 
tions, with the height of the central lobe being proportional to (K+-  K_) and the width to 2*r/K+, with 
K+ > >  r_. Thus, the specular target regions are identifiable with a resolution that depends directly on the 
high-frequency character of the data and on the bandwidth of information available, i.e., the ill-posedness of 
(12) can be avoided to obtain a solution for the band- and aspect direction-limited case. However, the case of 
aspect-sparse information still needs to be considered in depth utilizing the Radon projection theory [27]. 

6. POLARIZATIONAL CORRECTION 

The POFFIS method suffers one critical deficiency in that A (r') can be recovered with sufficient accuracy 
from FR(t') only up to the shadow boundary at r ' =  r~ for which A(r'= r~)= Ama x becomes the peak 
transverse cross section in the evaluation of (3). The formulation of F(K) from p(x)  in (5) and ~(~,q) from 
A (r') in (7) requires matching of RCS response data across the shadow boundary using complementary data 
sets along one radar line when viewed in the two opposite directions. A systematic approach to optimal match- 
ing across the shadow boundary for general nonsymmetrical 'shapes is nonexistent and mechanisms [6,8] 
developed for axially symmetric cases are very heuristic and require thorough additional analysis. Diffraction 
processes in the penumbra region are highly polarization-dependent and so are those for regions of nonidentical 
principal radii of curvature. Since the PO approximation of (1) is polarization-independent, deoolarization 
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effects of nonrotationally symmetric bodies will strongly affect the accuracy of POFFIS shape reconstruction. 
Therefore, it will be necessary to develop a vector extension of scalar POFFIS utilizing available data of 
co/cross polarized components of the target RCS polarization scattering matrix [28] and of first-order vector 
corrections of the temporal PO approximation (1) which were derived in [29]. Using the notation established 
in [30], (1) may be extended to Je~ - JPo+JPo 1, where the related far-field response for (1) is given by (3) or 
by 

1 d2A (r') (H,1~l + Hi2~2) + (15) He° 2zr dr '2 

and that for (2) becomes 

HP°I 2~rl dAdr,(F') (n ix~ l  _ H/2fi2) T(K1-K2) (16) 

where fib ~2 are orthogonal unit vectors along the incident magnetic fields and K1,K2 denote the associated 
principal curvatures along al and fi2. Whereas (15) results by integration in the ramp-response identity (3), 
(16) becomes a step-response identity [1], 

1 (17) F u (t ') = ~ A ( r ' ) (n / l a  1 -- mi2fi2) (K1-K2)r 

From inspection of (15), (16), and (3), we find that the correction terms are certainly nonnegligible if the prin- 
cipal curvatures differ appreciably, in which case the POFFIS identities (3)-(11) become highly inadequate. 
The antisymmetric nature of (15) and (16) also shows that, even if the cross-polarized components are 
neglected in applying POFFIS, different results in shape reconstruction are obtained if incidence is chosen 
purely along al or purely along a2 for nonsymmetrical target shapes, as was demonstrated beyond doubt in 
[6,8,30]. Thus, instead of simplistically generalizing a scalar-wave approach to a vector ,wave Solution [31], we 
need to revisit the highly complex diffraction processes of skew incidence on nonsymmetrical targets, and 
relevant relations are reviewed next. Similarly, we need to reevaluate the performance abilities of most 
recently developed broadband radar systems with dual polarization facility for extracting useful coherent target 
information from incoherent clutter-perturbed data. 

7. PENUMBRA DIFFRACTION AND HF INVERSE SCATTERING 

In analyzing the validity of various scattering theories applicable to profile reconstruction of closed, per- 
fectly conducting shapes, derived from the physical optics or the geometrical optics approximations, it is neces- 
sary to establish the field properties in the transition region about the shadow boundary and deep into the 
umbra region [2, Chap. 4.4]. FOCK [32], in analyzing the exact integral equation for the induced surface 
currents, showed that for HF scattering the current distribution in the transition region along the shadow boun- 
dary depends only on the local curvature, and, in particular, on the curvature P0 of the GO shadow boundary, 
where the width d F of the penumbra region becomes 

d F = (~kpo2/Tr) 1/3. (18) 

This parameter will play an important role in smoothing the two silhouette area functions A (r') across the sha- 
dow boundary r ' =  r~ within the penumbra region (r~ - CIF/2) < r' < (r~ + all2).  Fock's theory, which intro- 
duces special diffraction functions along local coordinates parallel and normal to the shadow boundary [33-35], 
will prove very useful in analyzing diffraction effects, including creeping-wave contributions, which must also 
be taken into consideration in correcting POFFIS. 

8. DATA UTILIZATION OF ADVANCED BROADBAND POLARIZATION RADAR SYSTEMS 

Although we have found that POFFIS suffers many limitations, its near-future applicability to practical 
target imagery cannot be ruled out, since modern advanced broadband radar systems with dual polarization 
facility will provide all the input data for POFFIS and its correction, to the degree of accuracy required. Since 
in radar tactical environments the useful coherent target signal has to be recovered from incoherent clutter per- 
turbed data, it is essential that we analyze the properties of the polarization scattering matrix and its relation to 
the Stokes vectors and the Mueller matrix target operators [2, Chap. 8]. Namely, it is possible to derive a 
polarization processing algorithm which selects optimum polarization for target parameter discrimination in the 
presence of background clutter [36], so that in consideration of POFFIS useful coherent target information 
(amplitude, phase, Doppler-range, and polarization) can be recovered to a degree of accuracy dictated by the 
amount of a priori known background clutter statistics [38-41]. 
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Following STEINBACH [39], the target scattering matrix [S(t)] possessing relative, but not absolute 
phase may be defined as 

[S]=[ SxxSxy] Syx, O, Syx Syy ' S~y = 4~y = 4~yx = (19) 

where ~ may be chosen along the horizontal and ~, along the vertical direction [2, Chap. 7.3], and for the 
monostatic case the complex field-cross section p (K) of (4) is the Fourier transform in K-space of either S,=,(t) 
or Syy (t). The time averages (< > )  of the square moduli IS o (t)12, the inner products SoS*kl, their real or ima- 
ginary parts, and any specifically defined combinations can be related to the components M 0 of the 4×4 Mueller 
polarization matrix [M] [40] or the average Stokes scattering operator, as [M] is denoted frequently [41]. It can 
be shown that, of the sixteen Mq, nine are independent and all of them can be determined uniquely from the 
values of <S,:,(t)S*yy(t) > ,< [S~( t ) l> ,  < lSyy(t)12>, < Is~(t)12>, < S ~ ( t ) S * ~ ( t ) > ,  and <Syy(t)S*xy(t)> 
which have been reconstructed from measurements [42]. In case the target is embedded in background clutter, 
the objective is to separate the useful coherent clutter components, and can be achieved by using clustering 
properties of a characteristic set of null polarizations [28, 1970] on the polarization chart which is the projection 
plane of Poincar6's polarization sphere [43]. Namely, it can be shown that co- and cross-polarized null pairs of 
target and background clutter have highly different clustering properties, and this should make the extraction of 
useful target signals a feasible task. Here it is to be noted that the target scattering matrix [S] constitutes a 
complete description of the reflecting properties of a target for given frequency and target orientation. 
Although the elements of the matrix depend on the manner in which the measurements are made, the intrinsic 
properties of the matrix are functions of only the target and not the measurement technique, i.e. it is always 
possible to transform the matrix for one polarization pair to that for any other, and there are an infinite 
number of such transformations. If in (19) we let S U refer to the i th  polarization transmitted and the j th 
polarization received, the infinity of transformations gives rise to two chacteristic ones, the cross-polarization 
null pair for which Sq=Sji=O , and the  co-polarization null pair for which Sji=Sjj=O. It can now be shown that 
the two cross-pol nulls and the two co-pol nulls must lie on one great circle path on the Poincar6 sphere, where 
the cross-pol nulls are orthogonal, i.e., lie on the opposite ends of the great circle and bisect the great circle in 
between the co-pol nulls, which will in general not be orthogonal [41]. Thus if we know the location of one 
crosspol null and one co-pol null or only the two co-pol nulls, the locations of the other two nulls is deter- 
mined. The original radar cross section matrix [S] required five numbers to describe it: relative phase and 
amplitude of Sii,S~j and the amplitude of S U, where the absolute magnitude p = (Z~Zj I sij 12) ~'~ is invariant with 
respect to the [S] matrix transformation and defines the radius of the Poincar6 sphere, being a function of tar- 
get reflectivity. The properties are unique and their utilization in radar target detection and imaging is by far 
not exhausted [2, Chaps. 7,8]. 

9. SUMMARY AND RECOMMENDATIONS 

It has been established that considerable improvements of and deeper insight into the POFFIS technique 
can be obtained by utilizing properties of the Radon-projection-transform theory [2, Chap. 2]. Although the 
relation between the ramp-response identity (3) and the Bojarski-Lewis identity (4)-(6) has been established 
[44, Eq. (4)], extensive studies are still required to fully exhaust all new insights that can be gained by the use 
of Radon's theory. Particular emphasis needs to be placed on developing reconstruction algorithms which can 
be applied directly to the three-dimensional nonsymmetric target case. Furthermore, the Radon transform 
approach is also very well suited for analyzing the aspect direction-limited and the sparse-data case [27, 45, 46], 
as well as the question of uniqueness, self-consistency, and accuracy, by utilizing the determinacy theorems of 
LUDWIG [47] which have been well presented in [27]. 

The polarizational correction of POFFIS and other HF imaging techniques needs to be advanced along the 
direction presented in CHAUDHURI and BOERNER [30] employing first-order PO corrections in (3), and 
(15)-(17) and properties of penumbra diffraction (18). The particular unique properties of the RCS polariza- 
tion scattering matrix (19) need to be investigated in depth, and the additional polarization information should 
be integrated into applicable HF radar imaging techniques and HF inverse scattering theories. 
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INTRODUCTION 

Remote sensing techniques have been used in many branches of science and engineering very recently. 
In general, remote sensing techniques can be divided into two types, passive and active techniques. Passive 
techniques are basically listening devices and mathematically they lead to inverse eigenvalue problems of 
differential equations. Active techniques are basically transmitting and receiving devices and mathematically 
they lead to noneigenvalue inverse problems of differential equations. 

Here, an iterative algorithm for solving the inverse problems of determining the velocity coefficient of a 
wave equation from the partial information of the solution on the boundary surface is introduced and its con- 
vergence is discussed. But first a literature survey of methods for solving this type of inverse problems is given 
here. The above-mentioned iterative numerical algorithm was first introduced by TSIEN and CHEN [1] for 
solving an idealized velocity inverse problem in fluid dynamics; then it was further developed to have the capa- 
bility of  handling information with measurement  errors and information from a large range of frequencies [2]. 
Later, it was used to solve an inverse problem in electromagnetic wave propagation [3] and it compared favor- 
ably with the spectral domain method [4]. Independently, COHEN and BLEISTEIN [5] have developed a per- 
turbation method for solving this type of inverse problem where their first order solution is similar to the first 
order iteration of ours [1,2,3]. However, this method is not suitable for numerical computation as it stands. In 
Russia, NIGUL [6] and NIGUL and ENGELBRECHT [7] have presented a different perturbation method 
which can take care of  dissipative and nonlinear effects in the wave equation; however, it is limited to layered 
media and is not suitable for numerical computation. 

1. NUMERICAL ALGORITHM 

Consider the simple initial-boundary value problem for the wave equation, 

c2(x)t)2u(x,t)/Ox 2 -- 02U(X,t)/Ot 2 = O, 0 < x < 1, t > 0 , 

u(x,O) = Ou(x,O)/Ot =0 ,  u(O,t)= f ( t ) ,  a n d u ( 1 , t )  = 0  . (1) 

An inverse problem of (1) is to determine c2(x) or c(x)  from the given Ou(O,t)/Ox. By a Fourier sine 
transform, (1) is reduced to 

C2(X) d2u(x, to)/dx2 + to2u(x, to) ~ 0 ,  0 < x < 1 

u(0, to) = f(to) , u(1,to) = 0 (2) 

and now the corresponding inverse problem is to determine c (x) from du (0, to)/dx. 

The iterative algorithm is defined by 

Un+I(X , to) = Idn(X , to) + 8Un(X , t~), C2+1 (X) ffi C2(X) + ~C2(X), 

n = 0 ,1 ,2 ,3  . . . . .  (3) 

where 18un(x, to) I < lUo(X, to)l, 18c2(x) 1 < Ic2(x) l, 8c2(0) = 0, and c2(x)  is the initial guess. Upon substi- 
tuting (3) into (2) and neglecting second order and higher order terms, one obtains 

c2(x)d2un(x, to)/dx 2 + to2un(x, to) = 0, 0 < x < 1 

Un(0, to) = f( to) ,  un(l,to) -- 0 , (4) 
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and 

Cn2(x)d2Bu.(x, oJ)/dx 2 + ¢o 2 8u . ( x ,o )  = -gc2(x)d2un(X, OJ)/dx 2, 0 < x < 1 

8u,(0,oJ) = 8 U . ( 1 , c o )  = 0 . (5 )  

By using the method of Green 's  functions and replacing du,,+l(O, o ) /dx  by the given data du(O,o)/dx,  (5) is 
reduced to a first kind Fredholm integral equation, 

y01 [I /c2(x ') dun(x',~o)/dx'] 2 8cn2(x ') d x ' =  du(O, co)/dx - dun(O, to)/dx (6) 

Equations (3), (4) and (6) form the basic structure of the iterative numerical method• 

Equation (6) can be solved by using any one of the following techniques; the regularization method of 
TIHONOV [8], the linear inversion technique of BACKUS and GILBERT [9], the MOORE-PENROSE pseu- 
doinverse method [10], etc. The choice of frequencies ¢o's can be achieved by adopting any one of the follow- 
ing criteria; low noise-computational efficiency criterion [2], min imum error criterion [11], or well-conditioned 
matrix criterion [12]. 

2.  A S S O C I A T E D  I N V E R S E  M A T R I X  P R O B L E M  

Consider the linear system 

Axiffi f i  , (7) 

where _A is a k × k nonsingular symmetric matrix, f i ,  i = 1 . . . . .  p ~ k are linearly independent input vectors 
and x i, i = 1 . . . . .  p their corresponding response vectors. The associated inverse matrix problem is to deter- 
mine A from {f'} and some components of {x'}. For simplicity, only the ideal case where _X = (x l ,x  2 . . . . .  x k) 
and _F = (f l , f2 . . . . .  fk) are symmetric and completely known is considered here. 

Let 

A.+I = A_d_. + gA_. and x,~+l = x,~ + 8x~ , n = 0. 1, 2 . . . . .  (8) 

where 118A_.11 < I Ia .II  and I I~x.'ll < I Ix£11. Then the corresponding iterative algorithm is defined by 

An xin = f i  (9) 

and 

A~ -~gA.x~ = -gx"  . (10) 

After a considerable amount  of algebraic manipulation, (9) and (10) can be written as 

8A_4_, = A_,(_/- _F-1A,_X) . (11) 

Theorem: The iterative algorithm of (8) and (11) converges quadratically when ]]/ - _F -1A__0_xll < 1.  

Proof. Repeated application of (11) leads to 

~A.  = A0[1 -[- ( /  -- F - I A 0 X ) } { I  "~- ( /  -- F - l A 0 X ) 2 } , . ,  {1 + ( /  -- A o X )  2n-l} 

• ( _ / -  F-1AoX) 2' (12) 

Therefore, a necessary condition for convergence here is I [ / -  _F-1A_0_XII < 1. Moreover, R ,  = 

I l a d . l l / l l g d n - l l l " -  II_A0l[ -"+1 II_/-U~_A0_xll  2"-'(2-") • Hence for R.  to be a non-zero constant as 
n ~ 0% a = 2. This means that the iterative algorithm converges quadratically. Q.E.D. 
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We consider the inverse problem of determining small variations in propagation speed from remote obser- 
vations of signals which pass through an inhomogeneous medium. Under the conditions (1) that the variations 
can be written as a small perturbation from a known reference value and (2) that the medium of interest varies 
in one direction only, an integral equation has been developed for the variations which can be solved in closed 
form. Here, a technique is presented to obtain and process synthetic data from a scattering profile of arbitrary 
shape. The results of  numerical testing show that, as long as a velocity variation is indeed "small", both its size 
and its shape can be reproduced with negligible error by this method. 

INTRODUCTION 

A problem of interest in seismic exploration is to determine a sound wave's propagation velocity at points 
below the earth's surface, or ocean bottom, given reflection data at points near the surface of the earth or 
ocean. Mathematically, this is the inverse scattering problem of determining the coefficients of  a wave equa- 
tion, given only a knowledge of the waveform used to probe the medium and a limited knowledge of the solu- 
tion. The basic underlying assumption is that the unknown coefficient can be written as a small perturbation 
from a known reference value. A further assumption for the one-dimensional case is that the coefficient varies 
in one direction only (e.g., with depth). 

This problem was treated by COHEN and BLEISTEIN [1], who showed that, when the probes used are 
plane waves of all frequencies, both the size and the shape of the unknown coefficient Can be determined by 
taking, a Fourier transform of the scattering data. Here, a method is developed to test this result on syntheti- 
cally produced scattering data; the method used to produce the data is independent of the method used to pro- 
cess it. Also, the analogous time-domain inversion result is presented and tested. 

1. ANALYTICAL RESULTS 

We consider a medium for which the index of refraction is known up to small perturbations, and varies in 
one direction only. The objective is to determine these perturbations from observations of a scattered field 
generated by probing the medium with an impulsive signal (or, equivalently, with plane waves of all frequen- 
cies). Thus, in the frequency domain, the wave field u (k,z) is a solution of the following reduced wave equa- 
tion (the prime denotes differentiation with respect to z): 

u" + k2(1 + o~ (z)) u = O. (1) 

Here, k = ¢o/c with c a known constant and ~o the frequency. We also assume that the function c~(z) is 
nonzero only in a finite interval, say 0 < z < H, and that a (z )  is 0(~), where e is a small parameter. Our 
objective is to find a (z) from observations of u at z = 0. 

Let us suppose that we probe the region .of inhomogeneity with a pulse from the left. The Fourier 
transform in time of the incident wave is then given by 

ul(k, z) = exp(ikz). (2) 
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Then the total solution u of (1.1) will be of the form 

11 ~ bl I + US, 

with Us a wave which satisfies 

u's + i k u s =  O , z <~ O, 

u's - i k u s =  O , z >~ H. 

(3) 

(4) 

In COHEN and BLEISTEIN [1], th e following integral equation for a is obtained: 

f _ ~  ot(z) exp (2ikz) dz = O(k) ,  

with error O(e2). Here, 

u k (k, O) -- ikus(k,  O) 2ius(k,  O) 
O(k) = 

k 2 k 

(5) 

(6) 

Then,  to the same order of accuracy, 

a ( z )  = 1__ f : ~  0(k)exp ( - 2 i k z )  dk. (7) 

In the time domain, instead of (1-4), the differential equation, incident wave, total wave decomposition, 
and boundary conditions are as follows: 

( 0 2 -  : 2  (1 + ,~(z) )0 ,  2) U = 0, (8) 

U~(t,z) = 8 ( t  - z / c ) ,  (9) 

U(t ,z)  = U~(t,z) + Us(t ,z) ,  (10) 

O z U s -  c - lO~Us= O , z <~ 0 , 

8 zU s + c - l O t U s =  O , z >1 H. (11) 

Here 0z (0t) denotes a partial derivative with respect to z ( t ) .  In this case, the integral equation for ~ is 

:0  ~ dz a(z) fo~dt UI(t,z) Ul('r - t, z)- -2c fo ~ Us(t,O) dt. (12) 

The inversion of this equation yields 

~2~/c Us(t, O)dt. (13) a (z) = - 4  ao 

Formulas (12) and (13) are derived in the Appendix. 

2. NUMERICAL METHOD AND RESULTS 

These  results  were tes ted on several  examples  where the scat tering data was given as a funct ion of fre- 
quency,  and on one example  where  the scattering data was given as a funct ion of t ime. 

To generate the scattering data in (6), we first solve (1-4) with a known profile a (z). Then 0 (k) in (6) is 
generated and substituted into (7). The integration is carried out by using a Fast Fourier Transform (FFT) 
routine. The system (1-4) is solved numerically for each nonzero k in the discrete set required for the FFT 
routine as follows: For a given k, u (k,z)  is expressed in terms of solutions to the initial-value problem related 
to (1-4). Thus,  the system to be solved numerically is 

uj' + k2( l  + a)  u j =  O , j =  1,2, 

ui'(k,O.) = 1, u{(k,0) = 0, 

so that 

u2(k,O) = O, u'2(k,O) = k, 

u (k ,  7.) = ClUl(k, z)  + c2u2(k, 7-). 

Here, c 1 and c2 are constants to be determined. From (6), (2), and (14), 

O(k) = u'(k,O) - iku(k,O) c2 - icl 
k 2" k 

(14) 

(15) 

(16) 
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From (2) and (4), 

u'  + iku = 2 i k  , z = O  

u'  - iku = 0 , z = H. (17) 

Equations (17) are two linear equations for c I and c 2 which can be solved in terms of U l ( k , H ) ,  u ~ ( k , H ) ,  
u 2 ( k , H )  and u ~ ( k , H ) .  This yields O(k)  (observations at z = 0) as a function of the wave field at z = H. The 
wave field at z = H is obtained by solving (14) using a fourth order Runge-Kutta scheme (see, for example, 
DORN & McCRACKEN [2], p. 373). Lacking information for k = 0 is equivalent to determining a ( z )  up to 
an additive constant. However, it is assumed that a(0) can be observed as well as the wave field at z = 0, and 
this value adjusts the constant. In all examples, we have taken a(0) ~ 0. 

Examples of the results of the processing are shown in Figs. 1-5. The reference velocity c has been set 
equal to unity, so that the length scale is dimensionless. In each example, the agreement between the true 
a(z) and the reconstructed a(z) is excellent. 

A final example was treated to test (13). The data for this example was furnished by L. YOST [3] of 
Marathon Oil Company, and was processed (including the deconvolution of the source wavelet) without prior 
knowledge of the velocity profile. Here, the velocity profile is given by 

10,000 ft/sec., 000 ft < z < 100 ft 
c = 11,000 ft/sec., 100 ft < z < 200 ft.. 

,,/1 + a ( z )  10,000 ft/sec., 200 ft < z 

In Fig. 6, the velocity is plotted against depth z. Taking c = 10,000 ft/sec yields I~(z) l as large as 0.17; how- 
ever, the agreement between the true and reconstructed values for the velocity is still very good. 

3. CONCLUSIONS 

The computer processing described here has been shown to illustrate the validity of an analytical result in 
inverse scattering theory. In particular, we note the independence of the method used to obtain the scattering 
data from the method used to process it. (Compare GJEVIK, NILSEN AND HOYEN [4], where the same 
equation is used both to generate the synthetic scattering data which solves the "direct" problem and to process 
that scattering data in solving the "inverse" problem.) 

More importantly, we emphasize the success of this method in reproducing the exact  shape of a profile, 
given scattering data of all frequencies. (Compare further work by BLEISTEIN, COHEN AND GRAY (e.g. 
[5,6], in which the general shape of a scattering profile is assumed a priori in processing frequency bandlimited 
data.) 

APPENDIX 

We will derive (1.12-13) using methods developed in Bleistein and Cohen. Firstly, we define the unper- 
turbed operator L 0 by 

L o U  = (02-c-202) U. (A.1) 

Then 

Lo U~ = O 

Lo Us = a c - 2 0  2 U. 

Next, the "adjoint source" Vis introduced which satisfies the unperturbed adjoint problem: 

L o V = 0; 

0 z V + c - 1 0 t V = - 2 c - l H ( ~  - -  t) , z = 0  

0 z  V - -  ¢ - 1 0 t  V = 0 , 2" = H. 

By comparing the problems for UI and V, one can see that 

O2t V ( t , z )  = UI(T  --  t , z ) .  

(A.2) 

(A.3) 

(A.4) 

(A.5) 



314 

Also, Us and Vsatisfy 

U s = O  , t < 0 ;  (A.6) 

V = O , t > r. (A.7) 

Now, by (A.2-3), 

- a c - 2 V O T U  = U s L o V -  VLoU s 

= 8z[Us~zV-  v~zUs]-  c-2~,[UsO, v -  vOtUsl. (A.8) 

Integrating this equation with respect to t from 0- to r +  and using (A.6-7), one finds 

- ac-2fo*tUO2tVl dt ffi fo 'Oz[UsOzV - gOz Us] dt. (A.9) 

By integrating over space and using (A.5) and the boundary conditions in space and time (1.11) and (A.4,6,7), 
it follows that 

H r v 
- £  dzac -2  fo  dt U(t ,z)  U t ( r - t , z )  = 2 c - 1 £  Vs(t,O) dt. (A.10) 

Since the support of a is contained in the interval (0,H), we may replace the limits of integration in 
(A.10) by (0, oo), yielding 

- £ ~  dz ac ~2 -o~dt U(t,z)U1('r - t,z) ffi 2c -1 "U~r Us(t,O) dt. (A.11) 

The right side is a function of the field observations and, hence, known. The left side has two unknowns, 
namely, a and U s. However, Us appears only in U and, therefore, only through the product ~x Us. However, 
from (A.2), it is seen that Us is itself of the order of a. Thus, for small a, it is expected that ~x Ucan be rea- 
sonably approximated by a U1. In this case, (A.11) becomes an integral equation for a alone, namely, 

-- £ "  dz otc ~2 £ r  df ~(t - z/c)8('~ - t - z /c )  = 2 c  -1  __  £ r  Us(t, O) dI. (A.12) 

The integral on the left can be evaluated, Yielding 

~(z) 4 f  2z/c ffi - ao Us(t,O) at. (A.13) 
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INVERSE SCATTERING THEORY: 
EXACT AND APPROXIMATE SOLUTIONS 

Arthur K. Jordan 

Naval Research Laboratory 
Washington, District of Columbia 203 75 

INTRODUCTION 

The customary procedure for constructing a theory for an electromagnetic scattering phenomenon is first 
to assume some specific model for the scattering object and then to calculate the resultant scattered fields. This 
procedure is known as direct scattering theory. The scattered fields thus predicted are compared with the experi- 
mental scattering data and the specific model is altered until theory and experiment agree according to some 
acceptable criterion. 

Inverse scattering theory assumes only the general physical properties of the scattering object and then 
determines analytically the specific model of  that target using only the knowledge of the incident fields and the 
scattering data. This procedure inverts the customary analysis of the cause-and-effect relationship and so is 
known as inverse scattering theory. This general problem can be simplified if the scattering object is assumed to 
be an inhomogeneous region whose index of refraction has only a one-dimensional spatial variation. This pro- 
cedure is known as profile reconstruction. 

A general theory of profile reconstruction, due to GEL'FAND and LEVITAN [1], provides exact so lu-  
tions for the profiles of refractive index by using an analytic representation of the scattering data. Exact solu- 
tions of this inverse scattering problem will be presented and several approximate solutions will be discussed. 

The general physical model which we consider is the scattering of electromagnetic waves from a stratified 
ionized region, as shown in Fig. 1. This model has been used to study ionospheric radio wave propagation [2]. 
The effects of electron collisions and static magnetic fields have been neglected, so that the relative permittivity 
of the inhomogeneous region is 

e(k,x) 1 -  1 - ~ q ( x ) , x  >/ O, (1) 
~ o  

where eo is the permittivity of  free space and k = o/c, the wave number  in free space, and where co = radian 
frequency and c = velocity of light. The profile function q (x) is proportional to the electron density. 

The time-harmonic amplitude u (K,X) of the horizontally polarized electromagnetic field E = a y g y  satisfies 
the differential equation in the variable x 

d2 2 U(K,X) Jr {K 2- q(x)lu(K,x)=O, (2) 

where the spectral variable is the wavenumber in the x-direction, K = kcos O, u (K,x) is the Fourier transform 
ofEy(ct, x) ,  and t t he  time. The case of a vertically polarized field will be discussed below. 

The profile function q(x) in (2) will be assumed to be real, bounded, and piecewise continuous in 
0 ~< x < 0% with q (x) --= 0 for x < 0. Thus,  it is possible to obtain a solution of (2) which satisfies the 
asymptotic conditions 

[r(K)e -i~x + e i~:x, x -"* - -oo, .  

u(K,x) = [T(K)ei~X, x - -  +oo. (4) 

The reflection coefficient r (K) and transmission coefficient T(K) are assumed to be represented by analytic func- 
tions of K in the complex K-plane. From the conservation of energy, 

Ir(K) i 2 4- IT(K) I 2 = I, (5) 
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where 

Ir(~)l 2= r(K)'r(K) = r(K)'r(--K), 

IT(K)[ 2=  T(K) .T(K)= T(K) .T(-K) ,  

for real K , and where r--('ffY means complex conjugate of r(K). 

The inverse scattering problem can now be stated: Given the reflection coefficient r(K) as an analytic 
function of the wave number K, find the self-consistent profile function q(x) .  (Here, self-consistent means 
that no further information is needed to find a unique profile.) We will direct our attention to the analytic rela- 
tionship between the reflection coefficient and the profile function. The problem of the appropriate data pro- 
cessing to obtain the reflection coefficient r (K) warrants a separate investigation. 

INVERSE SCATTERING PROBLEM 

The time-harmonic wave amplitude in the free-space region is 

uo(K,x) = ei~X + r(K)e -~Kx, x <~ O, (6) 

where only the dependence on the x spatial coordinate is shown. The corresponding time-dependent electric 
field is 

Eyo(X, Ct) = 8 ( x - c t )  + R ( x  +ct) ,  x <x O, (7) 

where 8 ( x - c t )  = incident 8-function impulse, and R (x + ct) = reflected transient. 

The time-dependent field in the inhomogeneous region satisfies the differential equation 

02Ey 1 02gy 
0X 2 C2 Ot 2 q(x)Ey = O.x >10. (8) 

The retarded electric field can be represented in terms of the electric field defined by (7) with the transforma- 
tion [1,3] 

Ey (x, ct) = Eyo (x, ct) + f_~ K (x, ~) Eyo (~,ct) dE, (9) 

where the function K (x, ~:) also satisfies the differential equation (8) with the boundary conditions 

K ( x , - x )  = O, (10) 

dK (x,x) 1 
dx 2 q(x) .  (11) 

For a wave moving toward the right, the retarded field satisfies the condition 

Ey(x, ct) = O, ct < x, 

so that (9) together with (7) provides the integral equation 

+ K(x ,  ct) + ,,-cfXtK(x'~)R(!~+ct)d¢ = O. R ( x + c t )  

(12) 

(13) 

If this equation can be solved for K(x ,~) ,  then (11) gives the solution to the inverse scattering problem. 

2. EXACT SOLUTIONS 

In principle, the inverse scattering problem is solved if the Gel'fand-Levitan integral equation (13) can be 
solved for K(x,  ct) so that the profile function q(x)  is found from condition (11). The general solution of (13) 
is not a simple matter. However, there are two useful exact solutions: 
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i. R (x+ct) is separable, R (x + ct) = R l ( x ) R l ( c t )  . 

If R (x+ct) is separable, direct substitution shows that the solution to (13) is 

-R l (X )R l (C t )  
K (x, ct ) = 

ii. r (K) is a rational function of K (or R (x) is a sum of exponentials). 

The integral equation (13) can be solved exactly when r(K) is a rational function of K, considered as a 
complex variable [3]. In this case, the reflected field is 

1 f 2 r ( K ) e _ i ,  ( . . . .  ) d x - - i ~  i~,( . . . .  ), R (x+ct) = ~ , - I  r,e , (14) 

where the integral represents the continuous spectrum of r(K) and the discrete spectrum is represented by the 
sum over the poles, Kn, if any, on the positive imaginary axis with the residues, r,. If q(x)  >~ O, as in the 
present model of ionospheric scattering, then r(x) has no poles on the positive imaginary axis. If the poles of 
r(K) lie on the unit circle, then r(K) is the nth-order Butterworth approximation and the integral equation (13) 
can be solved rather easily [4]. 

Examples of Exact Solutions 

The reconstruction method can be demonstrated with a third-order rational approximation to r(K), e.g., 
r(K) has three poles in the complex K-plane [5]. The resultant profile function q(x)  resembles electron density 
profiles that have been analyzed by direct methods [2]. We consider the reflection coefficient 

r (K)  = K IK2K3 (15)  
(K  - ~ ] ) ( K  - ~ 2 ) ( K  - K 3 )  ' 

where K2 = - - K I  = C1  - -  ic2 and K3 = - ia .  The normalization has been chosen so that r(0) = - 1 .  Conserva- 
tion of energy requires that 

I r (~) l  2 ~< 1. (16) 

This defines the regions for the allowed pole locations, shown in Fig. 2 by the shaded portion. The reflected 
energy density t r (~) l  2 is shown in Fig. 3 as a function of K for the configuration of poles shown in Fig. 2, 
assuming that a = 1.0, cl = 0.50, c2 = 0.499. This configuration is also shown in Fig. 4.3. 

An example of a discrete as well as a continuous spectrum is furnished by a reflection coefficient with the 
pole configuration shown in Fig. 4.5. The symmetric poles on the unit circle in the lower half-plane correspond 
to the two symmetric poles for the third-order Butterworth approximation, these poles representing the continu- 
ous part of the spectral function for the differential equation (2); the pole on the positive imaginary axis 
represents the discrete part of the spectral function: 

r(K) - i  
K 3 + i "  

= 1 ( . , / ~ _  i), K 1 

K2 = --KI, 

K 3 = i .  

A solution of this inverse scattering problem has been presented by S. Ahn at this conference. An alter- 
nate, but completely equivalent method, will be summarized here. 

The characteristic function R (x) is found from (14) to be 

R ( x )  1 + i-,/3 -~(I+H'~) 1 - i-Vr3e-~(1-H~) 1 
e 6 + ~ - e ,  (17) 

where the first two terms represent the continuous part of the spectrum and the last term represents the 
discrete part of the spectrum. 



321 

We will use this example to demonstrate an alternate, but equivalent, technique [3,4] for solving the 
d 

integral equation (13). It is possible to construct a differential operator f (p) ,  p--*-~y, such that 

f (p )R  (x) = 0. For a three-pole reflection coefficient, 

f (p)  = p3 + i(K1 + K2 .4. K3 ) p2 _ (K1K 2 + K1K3 + K2K3)P _ iK1K2K3, (18) 

so that, in the present case, f (p)  = p3 _ 1. The differential operator is applied to (13) to obtain (here we f i x x  
and consider p to represent differentiation with respect to y = ct <~ x) 

f(p)K(x,y)  + K(x , -y )  = 0, (19) 

and by symmetry 

f ( - p ) K ( x l - y )  + K(x,y) = 0. (20) 

The boundary conditions on K (x,y) are 

K(x,y) ly=-x = O, (21) 
\ 

K'(x,y) I,=-x = R'(x)Ix=0 = 0, (22) 

K"(x,y) [y=-x = R"(x)Ix=0 = - 1 .  (23) 

Eliminating K(x , -y )  between Eqs. (19) and (20) yields p6K(x,y) = 0, so that 

K(x,y) = C5(x)y 5 + C4(x)y 4 + C3(x)y 3 + C2(x)y 2 + Cl(x)y + Co(x). (24) 

F rom (19)-(23), we obtain 

x 3 - 3 y2 x5 + 6x2 
X ( y 4 +  12y) + (25) 

K(x,y) 8x 3 + 12 4 X ~ +  6 2(4x 3 + 6) ' 

SO that the profile function is found from (17) to be 

q(x) 24x(2x 3 - 3) x >~ 0. (26) 
(2X 3 + 3) 2 ' 

AS x "-* ~ ,  q (x) = 1/x 2, which is the same asymptotic behavior as the profile function which was derived 
from the second-order Butterworth approximation [4]. There is a "potential well" closer to x = 0 with one 
"bound state" or "characteristic mode" with the value ql = - 1 ,  corresponding to the pole on the positive ima- 
ginary axis at Xl = + i. There is a simple check on the number  M of bound states which was obtained by 
BARGMANN [6] for direct quantum scattering theory: 

M ~< J'lxl.la_(x)ldx ~< M +  1, (27) 

where q_(x) is the portion of the profile function where q (x) < 0. After integrating by parts between the lim- 
its 0 ~< x ~< (3/2) 1/3, we can evaluate this integral to obtain M ~< 3 - 2  In 2; so that M = 1. (Positive and 
negative values of the profile function can be interpreted physically in terms of the scattering of vertically polar- 
ized waves by an inhomogeneous dielectric region, discussed below.) 

A reflection coefficient with a zero at K = 0  is shown in Fig. 4.4. r(K) also has the second-order Butter- 
worth poles 

r(K) K 
K2+i~I2K- 1" 

The reconstruction method yields the profile function 

qN (x) 
q(x) qD(X)' X >/ O, 

where 

qN(X_____~_) -~3 [(4--x/2)sinx/'3x + -,/6cos-qr3x] ~ [ - - - ~ - - s l n x / J x  + - ~ c o s - ~ x ]  4(~./2+1) = 2 -  x e -~ [ 4 - 3 x / 2  . c ~  

[ qD(x) ~ ( - ~ + l ) e ~ - - ( - ~ - l ) e  -~-- s i n - ~  . 

Since r(K)I~=o = 0, there is a potential well for small x. However, there are no bound states. 
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If the electromagnetic field is vertically polarized so that H = ~yHy, then the time-harmonic amplitude 
v(k,x) satisfies the differential equation 

dx dx + k 2 -  

This can be expressed in a form similar to (2) by using the local wave impedance W(x)  with the following 
transformation of variables 

4~(k,x) = v(k,x) W4-W~, 

x = fo  V~oe(~)ct¢, 

[ 12 I w'(x) I 
q ( x )  = 12--~2fx~ i -  1 ~  I . 

Some values of W'(x) / (2  W(x))  can cause a negative q (x). W(x)  carl be found from 

W(x)  = W(O) (29) 
[l+F(x,O)l 2' 

~ X  

where F(X,O) = F(x,s)ls=o, W(O) = W(x)lx=o, and F(x,s) = J -x  K(x ,~)  e-S~a~; details can be found in I5]. 

The general form of the profile function q (x) is related to the pole-zero configuration of the reflection 
coefficient r (K). The continuous spectrum is represented by poles in the lower half-plane. The "smoothness" of  
q(x)  is determined by the number  of poles and zeros of r(x) .  If r(K) has Mpoles  and no zeros, then the (M- 
2)th derivative of q (x),  and all lower derivatives will be continuous at x = 0. This means that if r (x) has one 
pole, the corresponding q (x) will be discontinuous at x = 0. If r (K) has two poles, then q (x) will be finite at 
x = 0, but will have an infinite slope. If r (K) has three poles, both q (x) and q'(x) are continuous at x = 0 
but there is an "angle discontinuity". If r(K) has a zero at K = 0, then q(x)  will have a potential well, since 
waves with small energy penetrate the medium and are not reflected immediately. If a discrete spectrum is 
present, it can be represented by a pole on the positive imaginary axis. 

3. APPROXIMATE SOLUTIONS 

On the basis of the preceding discussion, several approximate solutions of the Gel 'fand-Levitan equation 
can be suggested: 

i. Neglect higher-order poles. For example in the three-pole reflection coefficient, if k 3 = - ia ~ - ioo ,  
then q3(x) ---* q2(x) as x ~ 0% where q3(x) means the potential function obtained from a 3-pole r(K) and 
q2(x) means the potential function obtained from the corresponding 2-pole reflection coefficient as K3 ---* - ioo. 

ii. Approximate R (x+ct) by a separable function. This corresponds to a 1-pole r(K). 

iii. Use the second iterative solution of the Gel 'fand-Levitan equation. This perturbation solution was 
suggested by MOSES [7]. If r (K) -"* • r (K), • < <  1 (and R (x) "--' • R  (x)) ,  then an approximate solution of 
the inverse scattering problem is 

q, (x) = , [ - 2 - ~ R  (2x)l + e2R2.(2x). 

For example, in the 2-pole Butterworth case, 

[r(K)[2= 1 ~> q ( x ) =  4 
1 + K 4 (1 + -~e'2X)2' X >/ 0. 

Using the approximate formulation, 

q~(x) = a [4e-'f2X(cos.~x - sir~-2x)] + e2[2e-4-2Xsin2~/2x], x /> 0. 
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A more appropriate comparison could be obtained by using the potential function obtained by the method of 
solution demonstrated in (17)-(25). 

iv. For the case of vertical polarization, if the reflection coefficient is small, then the "taper function" 
W'(x) 

2 W(x) is related to the Fourier transform of the reflection coefficient, 

W'(x) f~r(K)e2J.xdx. 
2 W(x) 

It is apparent that for this approximation to be valid, r (K) should have more than 4 poles. 
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The inverse scattering problem for the one-dimensional Schr6dinger equation in the space L2( -co ,  oo) 
that will be discussed in the note was first considered by KAY [1] in 1955. The problem is well defined, e.g., 
as in the superb review by FADDEYEV [2]: Find the interaction potential q (x) of the particle energy operator 
L, given the reflection coefficient r ( k ) ,  such that the particle-wave function satisfies [1] 

U(x,k)  ~ eikx q - r ( k ) e  -i~, x ~ - - ~ ,  (1) 

U(x, k) --~ t(k)eit~% x ~ +oo. 

In the usual direct scattering problem, the reduced energy operator/~ in one dimension, 

d 2 
£ - - - - + q ( x ) ,  

dx 2 

determines the wave number k by the eigenvalue equation, 

LU(x) = k2U(x). 

(2) 

(3) 

The inverse solution of (3) was obtained by Marchenko,  and by Jost and Kohn; but more thoroughly by 
Gel 'fand and Levitan by means of the so-called GEL'FAND-LEVITAN integral equation [3], i.e. 

R ( x  + ct) + K(x ,  ct) + f ~ 2 K ( x , y ) R ( y  + ct)dt = 0, (4) 

where 

q (x) 1 dK (x,x) (5) 
2 dx 

and R is the Fourier transform of r (k ) .  KAY [4] found a formal solution K(x ,  ct) of (4) when r (k )  is a 
rational function of K with no bound state included. It is possible [1,5] to find solutions of (4) for the 
reflection coefficient r (k) of rational form with a few bound states and continuous spectra. Solutions for non- 
rational or meromorphic functions of r (k )  cannot be obtained analytically in closed form by the usual inverse 
method. 

Some solutions were obtained for nonrational r (k) ' s  with a branch cut via the functional equation method 
[6] in the plasma inverse scattering problem, where the potential function is assumed to be positive and, conse- 
quently, excludes the bound-state problem. 

I will go back to the fundamental equation (3) and will derive a form of the Gel'fand-Levitan integral 
equation (4) to solve the inverse scattering problem for a reflection coefficient r (k )  of meromorphic type with 
bound states. "A new functional equation is then obtained by Laplace transformation of this new form of the 
generalized Gel'fand-Levitan integral equation by a procedure similar to that described in [6]. 

The question of how to find r (k )  directly or indirectly from the time response data of R (x + ct) is not 
pursued here. I assume that r (k )  is known a priori. 

CAUSALITY 

When the incident wave 8(x - ct) corresponding to the particle wave U(x,k)  in (1) travels in the poten- 
tial q (x),  where 
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q ( x )  = 0 for x < 0 and real for x /> 0, (6) 

the reflected and bound-state waves are found by making use of the causality condition in the Fourier 
transform, i.e., 

1 
R ( x  + ct) = - ~  f r ( k ) e - i k ( x  +ct)dk, x + ct >t O,x ~ 0 (7) 

1 L B ( x  + ct) = - - ~  r (k)e-Jk(x+ct)dk ,  x + ct >~ O, x ~ O, (8) 

where C is the counterclockwise contour around the bound-state poles on the positive imaginary axis. The 
reflected wave R (x  + ct) is caused by 8 ( x  - ct) and vanishes when x + ct < 0. Since the bound state wave 
B ( x  + ct) is also activated by the incident wave 8 ( x  ct),  its domain of nonvanishing values is defined to be 
the same as that of  R (x  + ct). Due to causality, the total particle wave in the left half-plane is 

Ut(x, ct) = Uo(x, ct) = 8 ( x  - ct) + R (x  + ct) + B ( x  + ct), x <~ O, x + ct >/ O, (9) 

and becomes a causal function in the same manner, i.e., Ut(x, ct) = 0 when x + ct <~ 0 and x ~< 0. 

The retarded particle wave can be written with the aid of the MARCHENKO kernel [7], i.e., 

Vt(x,  ct) = Uo(x, ct) + Uo(Y, ct)dy, x >/ O, (10) 

where Yo = max ( - c t , - x ) .  K ( x ,  ct) defined by (10) has the property that 

K ( x ,  ct) = 0, when ct > x > 0, ( l la)  

K ( x ,  ct) = 0, when - c t  > x ~. 0, ( l lb)  

K ( x ,  et) = 0,when x <  0. (11c) 

That is, K ( x ,  ct) becomes causal in the x - t space and also satisfies the wave equation 

/) (x,t) K (x, ct) = q (x )8  (x  - ct), (12) 

where we defined the transient wave operator b with q ( x )  in (6) 

0 2 1 0 2 
b (x,t) = q (x). 

0x 2 c 2 0t 2 

K (x, ct) is thus a spacelike solution of the wave equation. 

The causality property of K (x, ct) in ( l la)  can he derived from that of Ut(x, ct) , namely, from the general 
form of (10), with the upper and lower bounds of the integral extended to _+oo. This latter solution is 
obtained, since a linear integral transformation exists between Uo and Ut by (10). 

From the property that Ut(x, ct) = 0 when x < ct, Ut(x, ct) should depend only on Uo(Z, ct) ,  where 
z ~< x, and therefore we find the property ( l la) .  In free space (x x< 0), Ut(x, ct) = Uo(x, ct) ,  which results in 
the property ( l lc) .  The property that ~ ( x ,  ct) = Uo(x, ct) = 0 when 0 ~ x ~ - c t  leads us to ( l ib)  and a 
lower bound - x  of the integral in (10). Another lower hound, - c t ,  is due to the property (7) of the retarded 
wave R (x  + ct) in the spacelike region (and x > 0). 

Thanks to the causality and Marchenko kernel function, the retarded particle wave has a clear physical 
meaning. The observable wave at x and t inside the forward light-cone (X < ct) is the sum of the initial wave 
U0 and the integral of K ( x ,  ct) Uo(ct, ct) over the accessible space-time - x  < ct  < x in Fig. 1. 

The physical meaning of K (x, ct) becomes evident from (12), which can be rewritten 

1)(x, t )  Us(x, ct) = O, (13) 

where 

U~(x,t) =-- 8 ( x  - ct) + K ( x ,  ct). (14) 

Due to the properties (lla,b,c),  K ( x ,  ct) is a spacelike solution of the transient wave operator /)  and, due to 
(11 c), K (x, ct) becomes a reflectionless wave. 

In summary, given a timelike solution Ut(x, ct) = Uo = 8 ( x  - ct) + R ( x  + ct) + B ( x  + ct), x < O, for  
q ( x )  defined as in (6), there exists correspondingly a unique space-like solution Us(x, ct) = 6 ( x  - ct) + 
K (x, ct), to the transient wave operator 1)(x , t )  o f  (12). Moreover, Us (x, ct) is reflectionless. 
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Since Us(x, ct) has no reflection, nor is it reachable by an observer inside the forward light-cone due to its 
space-like nature, the space-like solution Us (x, ct) is an unobservable wave. 

Now let me introduce an entire transient wave [3(x, ct) as in [6], that is, the difference of two correspond- 
ing time-like and space-like solutions, 

U(x, ct) = Us(x, c t ) -  Ut(x, ct), • (15) 

with Us as in (14) and Ut(x, ct) as in (9) and (10). Then U(x, ct) is bounded everywhere in the x,t space and 
vanishes when x + ct < O. 

By substituting (15) into (10), we finally obtain a new version of the Gel'fand-Levitan integral equation 
by defining 

.~(x  + ct) = R ( x  + ct) + B ( x  + ct). (16) 

Then we get 

+ ct) + U(x, ct) + :m:x [-x.-c,l ~ ( x ' y ) k  (3' + ct)dy = 0. (17) (x 

Equation (17) is a generalization to the case of the bound-state potential. The same version of (17) was previ- 
ously obtained for the positive potential with no bound states in the plasma inverse problem [6]. 

LAPLACE TRANSFORM AND FUNCTIONAL EQUATION 

The Laplace transform of (16) gives rise to a functional equation of the form 

/~ (s)[exp(sx) + / ( ( x , - s ) ]  + [( (x ,s )  + (](x,s) = O, 

where 

and 

/~(s) = f0  ~ JR0 ' )  + B(y ) l e -Vdy ,  

g (x, s ) = :_~ U (x,y) e - Sydy 

= rj= U(x ,y )e -VdY • 8(x,s) 

From (20) and (21), we recover 

K ( x , x )  = U ( x , x ) =  l i m s e ~ @ ( x , s ) =  lim se*~k(x,s).  
s ~  s ~ - ~  

(18) 

(19) 

(20) 

(21) 

(22) 

The power of the generalized functional equation can be exhibited for the inverse problem corresponding 
to the step-potential case, the so-called branch-cut l~roblem with no bound state, i.e., B(y)  = 0, so that 

(s)  = - ( x ~ - - + k ~  - s)2/k~. (23) 

When (23) holds, the functional equation has the form 

where 

qJ2(s) - (s 2 + k~)62(s )  = 1, (24) 

1 
~(s )  --= 2 { K ( s )  + K ( - s )  + eSX+ eSX}, (25) 

6 ( s )  --= l { K ( s )  - K ( - s )  + e . . . .  e,X}. (26) 

The functional equation (24) has been solved by PENROSE and LEBOWlTZ [8] using MUSKHELISHVILI's 
method [91. A solution of (24) is tk(s) = 2 cosh (x-ff~ i + k02) and ¢ ( s ) = - 2 s  s i n h ( x ~ ) / . f f - ~ - + k ~ .  
By (22) and (13), we find the step-potential immediately. 

Another example of interest is the case where r ( k )  possesses two poles in the continuous spectrum and 
one bound-state pole [5], 

r ( k )  i 
k 3 + i '  (27) 
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namely, R (.s) ~ ( s  3 - 1) -1. Equation (18) can be solved [9] to find that 

[~(x,s) = f l  esx + f2 e-sx, 

fi'6s) = 6(x2s -4 - xs-5)(2x 3 + 3) -1 - s -3, 

f2(s)  = f l ( - S )  + 6x (1 + xs)s-2(2x 3 + 3) -1 , 

and 

(£(x,s) = [6xs (1 + xs) (2x 3 + 3) -1 + 1](1 - s3)-le -sx, 

which yields, by (22) and (5), 

q(x)  = 24x(2x 3 - 3) /(2x 3 + 3) 2 . (28) 

The true merit of solving the inverse problem by the functional equation (18) is demonstrated with the 
meromorphic reflection coefficient with an infinite number  of poles for continuous spectra in the lower half- 
plane, coupled with a finite number  of bound-state poles on the imaginary axis in the upper half-plane. For 
instance, it is very instructive to show how to solve the well-known potential well with a finite number  of  
bound states via the functional equation (18). In this case, 

ko2(e 2a'~- 1) 
~ ( s )  = (or - s) 2 - (~r + s)2e 2a~' (29) 

where k~ and a are the depth and width of the potential well q(x)  , and o- --  x / ~ -  k~. This is found [10] to 
have the similar functional form of (24), i.e. t~2(s) - (s 2 - k02) &2(s) ~ 1. 

In this short note, I sketched the derivation of (17) and (18) to solve the inverse problem with a mero- 
morphic reflection coefficient of an infinite number  of poles coupled with a finite number  of bound-state poles. 
This procedure could be easily modified for the potential 

q (x) ---, k02, as x --* 0% (30) 

which results in r ( k ) ' s  with a possible branch cut via x / k  2 + k~. 

I did not intend to give a review in this note, and many important and relevant papers were not quoted. 
They can be found in reviews by DYSON [11] and FADDEYEV [2]. A reader seriously interested in the 
inverse scattering problem should refer to the ' textbooks in [12] as well as to other papers presented in this 
conference. The conference proceedings edited by COLIN [13] has many useful papers and summaries,  and 
the essays in honor of V. Bargmann (see [1l]) also contain valuable papers. 
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Fig. 1. The retarded wave Ur(x, ct) inside the light-cone So(ct > Ix]) is the sum over the incident wave Uo(x, ct) and 
the integriuion of K(x,  ct') Uo(ct',ct) over the event C between two events A and B. The information on q (x) is con- 
tained in K U  o along the event line [B,A ] inside the light-cone S 1. 


